
 
 
 
 
 

Editorial 
 
With this issue, the Journal of Astrophysics and Astronomy enters its sixth year of 
publication. In the course of the last five years, we have brought out four regular 
volumes and also a special volume commemorating the Golden Jubilee of the Indian 
Academy of Sciences. The process of typesetting, printing and distribution has been 
streamlined. 156 articles by 194 authors have been published in 18 issues totalling 
about 2000 pages. (The General Index is in press, and will be released shortly). 

The Editorial Board is grateful to the entire astrophysical community which has
made this possible, whether by contributing research papers, or by improving the
quality of research through refereeing, or by reading the articles and citing them.We 
are hoping for increased support in future since the Journal has a tremendous potential to 
grow, particularly in terms of a larger number of pages per issue and more frequent 
publication. Further, as in the past, it will keep an open mind towards divergent 
scientific opinions and views as long as they can be formulated objectively and 
substantiated by arguments. 

We have had a very good response from the referees. Generally, each paper has been
refereed by two among the best workers in the field. They have expended considerable 
time and effort to improve the papers and have rarely been prejudiced, overcritical or 
indifferent. It is unfortunate that we did not receive revised versions of many articles 
for which the referees suggested substantial improvement. I would request our authors 
to always consider the referee’s comments seriously and in good faith, and to keep in 
mind that the referees have spared a good deal of their time with the sole purpose of 
improving the quality of the papers. We are listing below the names of most of our 
referees. Not included in the list are a few who have desired to be totally anonymous, 
the referees of very recent papers, and the members of the editorial board who 
sometimes took the responsibility on themselves. We are deeply grateful to all of them.

The success of a journal depends largely on its readers. We are happy to note that the
Journal of Astrophysics and Astronomy has acquired a considerable readership and that 
the articles published in it have been cited well. However, the astrophysical community 
cannot artificially be divided into authors, referees, and readers. We hope for a greater 
degree of overlap in their activities and also for increased involvement with the Journal. 
We would particularly like to solicit more research papers, as we can easily handle a 
larger influx without augmenting the processing time. 
 

V. Radhakrishnan 
Chairman, Editorial Board 
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Abstract. The tidal interactions in binary stellar systems are studied under 
the assumption that the orbital motion of the binary is negligible in 
comparison with the stellar motion. By integrating over time the tidal forces 
acting on the stars, the energy changes are derived. These are used to obtain 
simple analytical expressions for the rates of disruption and merging. This 
method gives appropriate value for the Roche density ρR and it is found that 
the disruption rate of a satellite of density ρ changes drastically at ρ     ρR A 
comparison is made with earlier results obtained under the simplifying 
assumption that stellar motion is negligible in comparison with the orbital 
motion of the binary and its implications are discussed. 
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1.  Introduction 
 
It is well known that tidal disruption of a satellite system occurs if its density ρ is less 
than a critical density, the Roche density ρR If ρ < ρR the satellite disrupts whereas for 
ρ > ρR the disruption is considered negligible. In this case the tidal effects of the satellite. 
on the outer parts of the primary generally turn out to be quite important and lead to 
the decay of the orbit of the satellite.Numerical studies of mergers of binary systems  
have been made by several workers (see Tremaine 1981; Alladin & Narasimhan 1982; 
White 1983a for reviews). Tidal disruption and merging are two important processes 
that govern the dynamical evolution of a binary stellar system. 

The dynamical friction formula of Chandrasekhar (1942) is of much utility in the
study of tidal effects in interpenetrating binaries, as confirmed by the numerical study 
of Lin & Tremaine (1983). However, the limitations of the formula in describing 
completely the underlying physics, despite its usefulness to predict decay rates rather 
correctly, has been indicated by the simulations of sinking satellites by White (1983b). 
Non-interpenetrating binaries also spiral into each other as a result of tidal effects, 
where the above formula cannot be used. 

Alladin & Parthasarathy (1978) (hereinafter referred as Paper I) studied the energy 
transfer in binary, spherical stellar systems under the impulsive approximation (IA) 
wherein it is assumed that the stellar motions may be neglected in comparison with the 
orbital motion of the binary. They derived analytical expressions for the times of 
disruption and merging for non-interpenetrating pairs. 

The use of IA for estimating the changes in energy in hyperbolic encounters has much
justification. Even in the case of slow hyperbolic encounters, this approximation is quite 
good (Toomre 1977); but when used for slower bound orbits of binary galaxies this 
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approximation generally overestimates tidal effects. Spitzer’s (1958) numerical work
with simple harmonic motion for the stars in the test system and uniform rectilinear 
motion for the perturber shows that IA is probably better than 20 per cent on the average 
if β = 2pω/ V < 2 where 2π /ω is the oscillation period of the star in the test system and p 
and V are the distance and velocity of the perturber attheClosestapproach. For β > 4 
ΙΑ overestimates the tidal effects by more than an order of magnitude. The criterion β 
< 2 implies ω < ω´ where ω´ is the angular velocity of the perturber at the Closest 
approach. Even at Roche density ρR for the circular orbit of the binary, the assumption 
of stationary star has been employed by King to obtain a very useful formula for the 
tidal radius (Equation 21). However, for a component of the binary whose density is 
much higher than the Roche density, ΙΑ will overestimate the disruptive effects for the 
circular orbit of the binary. 

In the case of bound orbits, the other extreme approximation, the adiabatic 
approximation (AA) wherein it is assumed that the orbital motion of the pair may be 
neglected in comparison with the motion of the stars in the system, is much better. This 
approximation has been used earlier by Avner & King (1967) to study the secular 
change in the angular momentum of stars in the Galaxy due to the tidal influence of 
Magellanic Clouds. They did not expect any secular change in energy. As pointed out by 
Richstone (1975), in a slow bound orbit of the binary, no change is expected in the 
energy of a star in circular orbit about its parent due to adiabatic invariance. But an 
adiabatic invariant is not constant over infinite time. Since the total energy of the entire 
binary system is conserved, the existence of dynamical friction implies that there is  
ecular increase in internal energy. 

In this paper we study the tidal interactions in binary stellar systems under AA. We
consider the stars to be moving in circular orbits. As in Paper I, the changes in energies 
of the stars in the test (parent) system are derived by integrating over the time the tidal 
forces acting on them. These are used to make estimates for the rates, of disruption and 
merging. 

If the potential due to the perturber is time independent, there cannot be any secular
energy change in the test system.Hence the neglect of the motion of the perturber in our 
treatment (AA) is incompatible with secular energy transfer from orbital motion of the 
binary to the internal motions. Nevertheless we shall use this approximation as an 
assumption. A similar situation is encountered in the widely used IA where it is 
generally assumed that the perturber moves in a straight line with uniform velocity. 
This assumption is also incompatible with energy transfer. But it has been successfully 
used to calculate the energy transfer. 

An interesting feature of the present work is that it highlights the drastic change that
occurs in the rate of disruption near the Roche density. The theory also gives reasonable 
estimates for the rates of merging of binary galaxies, and of globular clusters, with the 
parent galaxy. 
 
 

2. Energy changes 
 

2.1 Velocity Perturbation in the Adiabatic Approximation 
 
We consider the stellar systems to be spherically symmetric and non-interpenetrating
and the stars to be moving with circular velocities and having circularly symmetric 
distribution of velocity vectors. 



Binary stellar systems
 

Consider a stellar system of mass M1 (the perturber) at a distance D (assumed 
constant) from another system of mass Μ (the test system). We denote the quantities 
pertaining to the perturber by the subscript 1. We define a Cartesian coordinate system 
(X, Y, Z) with origin at O, the centre of M. As in Fig. 1, we take the X-Y plane to be the 
orbital plane of the star under consideration and let the X-axis be in the direction of the 
projection of the radius vector of O1, the centre of M1, on the X-Y plane and the Y-axis 
90° away in the direction of revolution of the representative star S. The Z-axis is taken 
in the right-handed sense. 

Since the problem involves the motion of S with respect to O, the relevant force is the
differential force exerted by M1 at S, relative to the force at Ο exerted by M1. This is the 
tidal force on S due to M1 per unit mass and is given by 
 

(1) 

where f* and f0 are the accelerations due to M1 at S and Ο respectively, and r´ and D are 
the radius vectors of S from O1 and O1 from Ο respectively. Let the position vector of S 
be r with components (r cos θ, r sin θ, 0), where θ is the angle measured from the X axis. 
Since 
 

the components of Equation (1) can be written as 
 
 

(2a) 
 
 

(2b) 
 
 

(2c)
 

Figure 1.     The Coordinate Systems 
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where b is the angle which D makes with the X-axis. These equations are the same as 
Equations 4, 5 and 6 in Avner &King (1967). The change in velocity of a star in time t is
obtained from 
 

(3) 
 
Since we assume that the perturber’s motion may be neglected, we set db / dt = 0. Hence
the above equation takes the form 
 

(4) 
 

where θ0 is the value of θ at t = 0 and θ 1 its value at time t. 
In the approximation in which the perturber remains stationary, ∆V depends on time 

both through θ and r´. The distance r´ is given by 
 

(5) 
 

(6) 

Writing a = r/D and expanding the right-hand side of Equation (2) binomially, and
neglecting terms of powers of a beyond 8 since a is small, we get  
 
 
 
 
 
 
 
 
 
 
 
 
 

(7a)  
 
 
 
 
 
 
 

(7b)  
 
 
 
 
 

so that
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(7c) 

The velocity perturbations in a fixed frame (ξ, η, ζ) with the same centre Ο in which 
the ξ-axis is taken in the direction of Ο1, the η-axis in the direction of the Y-axis and the 
ζ-axis perpendicular to both ξ and η axis in the right-handed sense as shown in Fig. 1, 
can be obtained by using the transformation equations  
 

(8a) 

(8b)  
(8c) 

 
 

2.2 Short-Term Energy Changes 
 
In this section we derive the changes in the energies of stars on a timescale equal to half 
its period. We shall refer to this time as short term. If the density of the system is less 
than the Roche density, the evolution of the system will be dominated by the short-term 
tidal forces. 

Equation (7) gives on integrating over half the period (i.e., integrating over θ from θ0

to θ1, where θ 1 = θ0 + π),  
 
 
 
 
 

(9a) 
 
 
 
 
 

(9b) 
 
 
 
 
 
 
 

(9c) 
From Equation (9) we obtain 
 

(10) 
The stars undergo different changes in energies depending on the values of θ0. On an
 



10 S. Μ. Alladin, Ν. Ramamani & Τ. Μ. Singh  
 
average; a star with a given value of b would acquire in a half period (∆V)2 given by 
 

(11) 
 

Because of the assumption of unperturbed circular orbits for the stars there is no 
change in the potential energy of the stellar system. Hence, ∆U = ΔT, where ∆U is the 
change in the internal energy and ∆T, the change in its kinetic energy. This is similar to
the case of IA where the potential energy does not change due to the assumption of 
stationary stars. The change in the energy per unit mass of a star at a distance r from the 
centre of Μ over half the period of its orbital motion, is given by 
 

(12) 

where V (P / 2, r) and V(0, r) are the velocities of the star at r at times t = P/2 and 0 
respectively. Now, 

(13) 
 

Hence Equation (12) becomes 
 

(14) 

The first term on the right-hand side is a fluctuating term which can be positive or 
negative for a star. Since we assume that the stars have a circularly symmetric 
distribution of velocities, to every star which moves in a certain direction, there is 
another star moving in the opposite direction. Hence the first term gives zero for any 
shell of radius r. We therefore get for a shell of radius r 
 

(15) 
 
 

As pointed out by Spitzer & Chevalier (1973) it is meaningful to estimate the change in 
the internal energy at median radius, Rh. Keeping only the dominant first term in 
Equation (15), we get for n = 4 polytropic model 
 

(16) 

where U (Rh) is the energy per unit mass at Rh. The numerical constant depends 
weakly on the model chosen: for n = 1 to 4, the constant varies from 10 to 12. 
Let ρh  = M /2(4πR h

3/3) and ρ1= Μ1/ (4πD 3/3).In terms of these densities, 
 

(17) 

This ratio provides a good order-of-magnitude estimate for the intensity of the tidal
force at Rh. The stellar system may be regarded as stable so long as this ratio is less than 
unity. Hence for stability we require, ρh> 2ρ1. If disruption at the periphery of the 
system (r = R) is considered, ρh should be replaced by ρ = M/(4πR3/3). 

Equation (17) is in good agreement with the criterion of stability given by Kurth 
(1957) and von Hoerner (1957). von Hoerneralso neglected the motion of the perturber 
as in our case. 

Chandrasekhar (1942) obtained for the stability of a homogeneous, ellipsoidal star 
cluster moving in a circular orbit of radius D under the gravitational potential    of the
Galaxy 

(18) 
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where the critical or Roche density ρ R is, in our notation 
 

(19) 
 
 

where b´ depends on the ratio of the axes of the ellipsoid, b´ is 1.33 for a homogeneous 
sphere. For spherically symmetric systems, the above equation yields 
 

ρ >3ρ1. (20) 
 

The same result can also be deduced from King’s (1962) formula for stability which 
states that the test system is stable if its radius is smaller than the tidal radius which is 
given by 
 

(21) 
 
where e is the eccentricity of the cluster orbit and Rp the distance of closest approach.

The result of the present analysis is therefore in good agreement with earlier results.
The present treatment also shows that 
 

(22) 

where the Roche density 
 (23) 

 
 

2.3 LongTerm Energy Changes 
 
In his analysis, Chandrasekhar neglected the higher order terms in r/D in the expansion 
of the galactic potential   These give rise to small but interesting long-term effects 
which we shall presently discuss. To obtain these, we integrate the tidal force over a 
period of the star, i.e., Equation (7) over θ from 0 to 2π. Irrespective of the value of θ0, all 
stars at a distance r would have the same value of ∆V when the integration is performed 
from θ0 to θ0 + 2π. Hence there is no need to average over θ as was done for short-term 
effects. The changes in velocities are 
 
 
 
 
 

(24a) 

(24b) 
 
 
 
 
 (24c) 

From these we get  
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 (25) 
 

From the above equation, we get for a shell of radius r  
 

(26a) 
 
 
 (26b) 

The change in energy at the median radius Rh is given by  
 
 
 
 

In Equation (27) we have retained only the dominant 
Assuming that the secular energy change for a star varies linearly with time and that 

the relative orbit of the binary is circular, the change in its internal energy over T, the 
orbital period of the binary, is given by 

(28) 
 
 
 (29) 

 

The changes in the internal energy of Μ due to all the stars is given by 
 
 
 
 

(30) 
 
 

Most of the contribution to this integral comes from the outer parts of the system in 
spite of the fact that there is very little mass there. If the stellar system is represented by a
polytropic model, this reduces to 
 

(31) 
 
 

where Kn = 4.2, 9.1 and 56.3 for polytropic indices n = 2, 3 and 4 respectively. 
From the energy conservation law, the change in the external energy is 

 
(32) 

 

Normalizing this with Ε = –GMM1 /2D, the energy of the binary orbit, we get,  
 

(33) 
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(27)
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2.4 Reversal Phenomenon in Tidal Effects 
 
It follows from Equations (26) and (16) that ΔU (Rh) / |U (Rh)| obtained for half a stellar
period is greater than that obtained for the full period. This implies that the tidal effects 
during the second half of the stellar period work in the opposite direction to a great 
extent. This can be seen mathematically by noting that when Equation (7) is integrated 
from 0 to 2π, the alternate terms give zero. The terms which are dominant in the case of 
half period do not contribute anything over a full period. This phenomenon of the 
reversal of tidal effects was earlier noted by Ahmed & Alladin (1981) in their study of 
changes in sizes and shapes of initially spherical galaxies in fast head-on collisions. They 
found from their numerical work that the galaxies became more and more prolate until 
their Closest approach. But as they receded from each other after their Closest approach, 
the prolate structure was destroyed. This happens because the tidal acceleration in the 
direction of motion of the galaxies gets reversed after their closest approach. On the 
other hand, the transverse acceleration works in the same direction throughout. This 
can also be inferred from the analytical derivation given by Toomre (1977) for a head- 
on collision of Plummer model galaxies under the impulsive approximation. 
 

3. Rates of disruption and merging 
 
As in Paper I, we assume that as the two systems spiral into each other, the changes in 
energy vary linearly with time. We define the rate of disruption at median radius by 
 

(34) 

Using Equation (27) we get 
 

(35) 
 
We define the rate of merging as 
 

(36) 
 

Using Equation (33) we get, 
 

(37a) 
 
Miller (1984) has discussed that the translational energy lost by a satellite due to 
dynamical friction is partly used in increasing the velocity dispersion of the background 
and partly in deforming the satellite and increasing its binding energy. These two parts 
are represented by the second and first terms respectively in Equation (37a). 

If we assume that Μ is ä mass point moving in a circular orbit with velocity Vorb, in 
Equation (37a) the first term may be neglected and it can be written in the form 
 

(37b) 
 

where An = 0.036(D/Rhl)5 5/(Kn)1 This may be compared with the dynamical friction 
time given by Larson (1976), i.e., the time required for dynamical friction to decelerate 
significantly a massive object moving with typical velocity V, 
 

(37c) 
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where Μ is in M ,V in km s–1 and ρlocal in M pc–3. In Larson’s formula, the local 
density of M1 is to be used while in Equation (37b), the density interior to D is used. For 
spherically symmetric models 
 
 
 

In Fig. 2, we plot t –1
m against the separation D/Rh taking Μ =M1 = 1012Μ  and 

Rh = 10 kpc for two mass distributions of polytropic indices n = 2 and n = 4. It can be 
seen from Fig. 2 that merging is always much faster than disruption for non- 
interpenetrating identical galaxies and that two typical elliptical galaxies (n = 4) will 
merge within a Hubble time if the separation of their centres is less than 70 kpc.t dh

–1  is 
also shown m Fig. 2. It is nearly the same for n = 2 and n = 4. 
 

4. Transfer of angular momentum 
 
On account of the simplifying assumptions we have made, the stellar systems cannot
acquire a net change in angular momentum. However, the changes in the angular 
momentum of individual stars can be studied under AA as was done by Avner & King 
(1967). A rough estimate for the changes in the angular momentum in the stellar 
systems can however be made from the change in the orbital energy by making use of 
the results of several workers (e.g., Tremaine, Ostriker & Spitzer 1975; White 1978; Lin 
& Tremaine 1983; Villumsen 1982) that dynamical friction tends to circularize the 
relative orbit of the binary. We shall therefore assume that the initially circular orbit 
remains circular throughout. It then follows from Goldstein’s (1950) Equation (3-48) 
that 

(38) 
 

Figure 2. Rates of merging and disruption under adiabatic approximation (AA) and impulsive 
approcimation (IA) in an equal component binary with Μ = Μ1 = 1012

 M  and Rh = (Rh)1 
= 10kpc. 
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and 
 

(39) 
 
The fractional change in angular momentum of the orbital motion of the binary is 
therefore half the change in energy. The stars in the two stellar systems will gain angular 
momentum at the rate dJ/dt. 

The merger process imparts rotation to the stellar system in the same sense as the 
orbital motion. Tidal interaction is enhanced if a system rotates in the direction of 
revolution of the binary (White 1979; Innanen 1979). Since the rates of disruption and 
merging have been derived without taking this factor into account, the actual rates 
would be greater than our values. 
 

5. Discussion 
 
AA predicts smaller tidal effects in comparison with IA. This is because the tidal effects 
in AA depend on higher powers of r/D than in IA. The merging rate of close equal- 
component binary galaxies obtained from Equation (37) does not differ so much from 
that given by Equation (2.23) in Paper I, as the disruption rate obtained from Equation 
(35) differs from that given by Equation (2.18) in Paper I. This is elucidated in Fig. 2, 
which compares the rates predicted by IA and AA. This is because the merging is largely 
determined by the energy changes occurring in the outer parts of the stellar systems 
where the motion of the stars is slower and hence IA is better, whereas the disruption 
occurs due to the energy changes in the relatively interior parts where the stars move 
faster. The neglect of the motion of the stars in the interior parts in IA in determining
the disruption rate is quite serious for ρ > ρR. 

In Fig. 3 we compare the disruption rates of a satellite predicted by AA, IA and by
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Rate of disruption under adiabatic approximation (AA), impulsive approximation (IA) 
and Kurth’s (1957) formula. In plotting the results for AA, we have used Equations (17) and (23) 
for ρh < ρR and Equations (23) and (27) with D/Rh = 3 for ρh > ρR. 
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Kurth’s (1957) formula over the range 0.5ρ R <ρ h< 2ρR.For ρh > ρR we have assumed 
D/Rh = 3 in AA. It can be seen from Fig. 3 that AA predicts a drastic change in the 
disruption rate near ρR. We have modified Kurth’s formula to obtain disruption at the 
median radius instead of disruption at the periphery by writing ρ h instead of ρ. IA 
estimates are obtained from Paper I using U (Rh) = 3U. Over the range 0.6 ρR < 
ρh <0.9ρ R, the three formulae give the same order of magnitude estimate for the 
disruption rate. IA overestimates for ρh > ρR. 

Considering the Galaxy and a globular cluster as a binary stellar system, the merging 
and disruption times of the globular cluster were calculated in Paper I under IA using 
Schmidt’s (1965) model for the Galaxy. The globular cluster was modelled as a 
polytropic distribution of index n = 4, mass = 105 Μ  and Rh = 7pc. We give in 
Table 1 t m 

–1 and tdh
–1 derived from the present treatment for the same model of the 

globular cluster using the more recent Ostriker & Caldwell (1979) model for the 
Galaxy. Values of tD

–1 (Larson 1976) are also given. A comparison of the results also 
shows that the disruption rates are considerably reduced in AA. The merging is always 
faster than disruption for a globular cluster until it reaches near the Roche limit and not 
slower as predicted by IA. This is also consistent with the scenario given by Tremaine, 
Ostriker & Spitzer (1975) according to which globular clusters spiral inward until they 
are tidally disrupted at the Roche limit. For D < 500 pc the disruption is rapid. 
Application of the theory discussed here to the Galaxy–LMC pair has been made by 
Ramamani, Meinya Singh & Alladin (1984). 

In Paper I it was mentioned that under IA ΔU/ |U| in a parabolic orbit is 8 times 
smaller than that in a circular orbit of radius equal to the distance of Closest approach in 
the parabolic case. This statement needs to be modified. It is more appropriate to infer 
∆U/ |U| for the parabolic case from IA and for the circular case from AA. When this is 
done, it follows that the transition from parabolic to circular orbit increases the tidal 
effects by not more than a factor of 3 if ρ = ρR. But if ρ> ρR, ΔU/|U| for a circular 
orbit would be considerably reduced below the parabolic value because the rapid 
motion of the stars tend to reduce the tidal effects. Thus as one goes from hyperbolic 
encounter to a circular orbit, the tidal effects at first increase until the parabolic limit is 
 

Table 1. Rates of disruption and merging fora globular cluster in the 
Galaxy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(n) indicates 10n  
† Larson (1976) 
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reached and later they decrease. The tidal effects are generally at their maximum near 
the parabolic case. 

A comparison between the nature of tidal effects in fast encounters and in slow 
bound orbits can be made by comparing the predictions of IA and AA. In AA the energy 
of the orbital motion of the binary is chiefly transferred to the internal motion in the 
outer parts of the stellar systems in spite of the fact that these parts contain little mass. 
But in IA more energy (not energy per unit mass) is transferred to the inner region 
(r~Rh) and the outer parts are relatively deprived. Thus if the inner region of a stellar 
system shows signs of being much perturbed by the companion, it is likely that a fast 
encounter may have occurred. Observations indicate that in some galaxies with 
companions the tidal haloes do begin in the deep interior (Kormendy 1982). 

The empirical mass-radius relation of elliptical galaxies, Μ ∝ Rn where 1 < n < 2, 
indicates that on an average the more massive elliptical galaxies are less dense. In a fast 
collision, the mass ratio is more important than the density ratio in determining the 
effects of mutual disruption, and hence the smaller galaxy suffers greater disruption in 
spite of its higher density (Narasimhan & Alladin 1983). On the other hand AA 
indicates that in bound orbits the density ratio plays a more important role and change 
in the structure of the bigger galaxy would be equal or greater. Since the relative 
velocities of galaxies are large in rich clusters and small in groups, it follows that bigger 
galaxies experience greater disruption in groups than in clusters. 

There is a striking analogy between an analytical expression (Equation 35) obtained 
here and that obtained by Zahn (1977) in the study of energy transfer in binary stars due 
to tidal effects. In close binary stars each star experiences a force arising from the tidally 
distorted non-spherical part of the mass distribution of the companion. The work done 
by this force causes secular change in the energy of the orbital motion of the binary. 
Zahn derived the circularization time or the time required by the elliptic orbit to 
become circular on account of this energy transfer as 
 (40) 
 

where k depends on the structure of the star, q = M1 /M in our notation, .tf is the 
timescale of fractional dissipation and a is the semi-major axis of the orbit. From 
Equations (27) or (35) it can be seen that for binary stellar systems 
 

(41) 
 

A comparison of Equations (40) and (41)shows that the rate of energy transfer depends on 
the eighth power of the dimension of the object of interest and the separation of the 
components in both cases. bn depends weakly on the model of the system. 
 
 

6. Concluding remarks 
 
Just as IA provides simple analytical expressions for estimating the tidal effects in fast 
encounters, AA provides similar expressions for binary systems in bound orbits. It leads 
to the value of the Roche density which is in agreement with the earlier works and it 
shows that the disruption rate falls steeply as the density becomes higher than the Roche 
density. The long term effects lead to reasonable values for the merging time. Concepts 
of Roche density and dynamical friction are important in stellar dynamics. The present 
analysis gives a unified treatment in which both emerge from an analysis of energy 
 
J Α A–2 
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transfer. However, the simplifying assumptions made are quite drastic and a more 
rigorous treatment of the problem is certainly desirable. It would be also helpful if n- 
body simulations throw light on the utility and limitations of the analytical 
formulae derived here. 

The tidal evolution of a binary stellar system is governed by the complementary 
processes of disruption and merging. In the case of equal component binaries, the 
merging process dominates while in the case of a satellite of density less than or not 
much greater than the Roche density, the disruption is more important. The relative 
importance of the two processes for any given binary can be estimated by using the 
analytical expressions derived here for the merging and disruption times. 
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Abstract. Inclusion of radiative heat transport in the energy equation for a 
slender flux tube leads to oscillations of the tube. The amplitude of the 
oscillations depends on the radius of the tube when lateral heat exchange
alone is considered. Longitudinal heat transport has a greater influence on the 
evolution of the instability than lateral heat exchange for the particular value 
of tube radius considered in the calculation. Heat transport is seen to reduce 
the efficiency of concentration of magnetic fields by convective collapse in the 
case of polytropic tubes. 

 
Key words: Sun, magnetic field—Sun, convection—fluid dynamics, un- 
steady flow—heat transport 

 
1. Introduction 

 
The general behaviour of convectively unstable fluids in the presence of magnetic field 
and heat diffusion has been well studied in the past on the basis of linear theory. For a 
Boussinesq fluid Chandrasekhar (1961) showed that whenever the electrical resistivity η 
was greater than the heat diffusivity χ, convective instability sets in as a monotonically 
growing instability at a critical value of the Rayleigh number R (e). This value increases 
with magnetic field, thereby demonstrating the stabilizing influence of the field. In 
stellar interiors, the radiative heat diffusivity is generally much larger than the electrical 
resistivity of the fluid. In such a situation, Chandrasekhar (1961) proved that 
overstability could set in at a Rayleigh number R (o) which is less than R (e), the critical 
Rayleigh number for onset of overturning convection. 

The effect of compressibility on the instability for an ideally conducting fluid was
studied by Kato (1966). In the case of an inviscid Boussinesq fluid, Kato (1966) showed 
that any arbitrary adverse temperature gradient led to overstability, irrespective of the 
value of the magnetic field. When compressibility is included, a regime of damped 
oscillations exists whenever the magnetic field is greater than a critical value. Thus, for 
weak magnetic fields in non-resistive inviscid fluids, convective instability always sets in 
as an overstability. Katos analysis, being a local analysis, could not take boundary 
conditions into account. The classification and behaviour of the linear modes of a 
polytropic fluid with vertical magnetic field and imposed boundary conditions have 
been explored in detail by Antia & Chitre (1979). They found that convective-slow 
modes would be overstable for weak magnetic fields, while at moderate values of the 
magnetic field, overstable fast modes would dominate the spectrum. Moreover, the 
growth rate of both series showed a maximum with respect to the horizontal wave 
number, thereby indicating the suppression of instability on small length-scales. For 
 



22 P. Venkatakrishnan 
 
horizontally structured magnetic fields, Roberts (1976) has demonstrated the existence 
of overstable modes. 

All the above results lead us to expect similar oscillatory convection for slender 
magnetic flux tubes as well. The linear stability of slender radiating flux tubes has not 
been explicitly studied although Webb & Roberts (1980a,b) have considered the spatial 
and temporal damping of optically thin disturbances in slender flux tubes. In this paper 
we first derive the energy equation for a slender optically thick flux tube (Section 2). We 
then investigate, albeit in a restricted sense, the linear stability of such a tube in 
Section 3. The initial and boundary conditions are spelt out in Section 4. We then 
describe the results of a few nonlinear calculations in Section 5 and discuss these results 
in Section 6. 
 
 

2. The Basic Equations 
 
The equations of continuity and motion for a slender magnetic flux tube are (Roberts & 
Webb 1978): 
 

(1) 
 

(2) 
 

(3)  
 

The complete energy equation in the presence of nonadiabatic terms is given by 
 
 
 

(4)

where                                                                                                                                              (5)

with

and
 

where ρ, ρ, υ, Β, Τ are the pressure, density, velocity, magnetic field and temperature 
inside the tube, pe is the pressure outside the tube, F is the radiative heat flux, Κ is the 
radiative heat conductivity, χ is the heat diffusivity, k is the Rosseland mean opacity and 
σ is the Stefan-Boltzmann constant. Equations (5) through (7) are valid for an optically 
thick tube in the ‘diffusion’ approximation. 

For thin tubes the lateral exchange of heat is important as can be seen from the 
magnetostatic models of Spruit (1977). When such a lateral exchange of heat is 
considered, one can no longer neglect the radial dependence of the dynamical variables 
as was done previously for the adiabatic flow (Venkatakrishnan 1983; hereinafter 
referred to as Paper I). We shall now follow Roberts & Webb (1978) to further simplify 
Equation (4). If Λ is the scale length of variation of the tube radius along its axis, then 
we shall consider terms of zero order in (r/Λ) in Equation (4). The first two terms 
reduce to 
 (4a) 

(6)

(7)
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vide equation (Al0) of Roberts & Webb (1978). 

The evaluation of the zeroth  order of the third term in (4a) needs some consideration. 
For this, let us assume the following profile for the radial dependence of temperature, 
viz 

(8) 
 

After substituting Equation (8) in Equations (3) and (5), and multiplying the resulting 
equation by r/Λ, we have upto first order in r/ Λ, 
 
 
 
 
 (9) 
 

From Equations (4), (4a) and (9) we have 
 
 
 
 
 
 
 
 

(10) 
 
Equating the coefficients of each power of r/A to zero, we have 
 

(11) 
and 
 
 
 
 

(12) 
 
 

Finally, by setting Τ = Ti at r = 0 we have 
 

(13) 
and by setting Τ = T e at r = r0, we have 
 
 
where r0 is the radius of the tube and T e  and Ti are the temperatures outside and inside
the tube respectively. Substituting Equations (13) and (14) in Equation (12) we have 
finally, 
 
 
 
 

(15) 
 

23
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The first term on the right hand side of Equation (15) represents the lateral influx of 
heat from the surroundings. The second term represents the longitudinal diffusion of 
heat while the last term arises because of variations of the heat conductivity with 
temperature and pressure. In what follows we will present a restricted linear stability 
analysis of a slender flux tube in the presence of lateral heat exchange alone and with 
constant diffusivity χ. We shall then numerically study the effect of lateral heat 
exchange, with constant conductivity K, on the nonlinear evolution of convective 
instability. We will next include longitudinal heat transport with constant Κ and finally 
consider a case of variable heat conductivity as well. 
 
 

3. Linear stability of slender radiating flux tubes 
 
The linearized version of Equations (1), (2), (3) and (15) are 
 

(16) 
 
 

(17) 
and 
 
 
 
 
 
 
 
 

(18) 
where 
 
 
and δ represents a perturbation of a variable whose zero order is represented by 
asubscript ‘0’. In the presence of lateral heat transport alone, Equation (18) becomes 
 
 
 
 

(19) 
 
 

We further write Κ = ρ0Cvχ where χ is the radiative diffusivity and assume that χ is 
constant. Then the final energy equation is 
 

(20) 
 
 
where 
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We impose the following boundary conditions, 
 

(21) 
 

Furthermore we choose perturbations of the form 
 
 

Substituting this form of the perturbation in Equations (16), (17) and (20), and 
eliminating δρ, δρ and δB, we obtain 
 

(22) 
 
where 
 
 
 
 
 
 
 
 
 
where 
 
 
 

Let us assume isothermal stratification, in which case the coefficients in
Equation (22) would become independent of z, admitting solutions of the form 
A1 exp(k1 z) + A2 exp(k2z). Substituting this form into the boundary conditions yields 
the dispersion relation 

(23) 
 
where 
 
 
 
 
 
 
 
 
 
 
 
where η is the order of the harmonic, ε = (Λ /gτ2)1/2, β0 is the ratio of gas to magnetic 
pressure, δ0 = (Γ– γ)/ Γ γ is the superadiabaticity and d is the length of the tube. We see
that Equation (23) is of fourth degree in σ. It must be mentioned that Webb & Roberts 
(1980a) obtained a third degree polynomial for an unstratified tube and fourth degree 
polynomial for a stratified tube (Webb & Roberts 1980b). They have not commented on 
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Table 1. Frequencies and growth rates of 
slender radiating flux tube. 

β = 6.0      δ = 0.3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the extra mode. An inspection of Equations (16) through (20) shows that the fourth 
mode arises out of stratification and nonadiabaticity. Following the nomenclature of 
Defouw (1970) we shall call this mode as the thermal-convective mode. In the limit ε   1
the roots of Equation (23) separate clearly into thermal and dynamical modes. It can
also be shown that in such an eventuality overstability is possible only if the equilibrium
state is adiabatically stable and that for adiabatically unstable states the thermal effects
only modify the growth rates. 

For finite values of ε, such a demarcation of the modes is not obvious. Table 1 shows 
the complex roots determined numerically in the case of finite ε for two values of d 
corresponding to an adiabatically stable and unstable state respectively. Overstability is 
seen only for the adiabatically stable state. The growth rate increases with increasing ε
and then decreases for large value of ε. The frequencies of the overstability are not
sensitive to the value of ε. However, the frequencies in the nonadiabatic case must
decrease as the equilibrium approaches a neutrally stable state in the adiabatic limit and
thus the period of oscillation must be dependent on the magnetic field of the tube.

However, this limited study does not include the case of unequal zero-order
temperatures inside and outside the tube. It is quite possible that unequal temperatures
might lead to overstability even when the equilibrium is adiabatically unstable, by the
excitation of new modes which are suppressed in the case of equal temperatures. 
 
 

4. Initial and boundary conditions for the nonlinear 
Calculations 

 
Equations (1), (2) and (15) form a system of hyperbolic partial differential equations 
provided we treat the derivatives of temperature as source terms. Thus the problem is 
 

<<
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an initial value problem requiring specification of the initial conditions. We chose the 
initial conditions, in the case of constant conductivity K, as a polytropic stratification 
with 
 
 
 
 
 
and 
 
 

Practical computational considerations require the imposing of boundary conditions 
at finite values of z. We chose the following boundary conditions: 
 
 
 
 
 
 
 
The lower (z = 0) boundary condition implies that the radius of the tube does not 
change in time while the upper boundary condition implies that there is no lateral leak 
of matter at the top. This has been explained in Paper I. Sometimes more boundary 
conditions become necessary whenever some characteristic emanating from the 
boundary fails to communicate with the interior. The additional boundary conditions 
used in such cases were 
 
and 
 

It must be remarked here that the density boundary condition at z = d is different from 
that used in Paper I where it was 
 
 

The introduction of the new density boundary condition saved the calculations from 
the numerical breakdown of zero pressure encountered in Paper I. 

The calculations were performed in terms of dimensionless units which are described
in Paper I and which essentially use the base pressure as the unit for gas and magnetic 
pressure, the base density and temperature as the units for the corresponding variables, 
the sound speed at the base as velocity unit, the pressure scale-height at the base as unit 
of length and the freefall time over this length as the unit of time. 
 
 

5. Results 
 
The convective instability will be a maximum in a region few hundred kilometres below 
the photosphere where the superadiabaticity is large. In this region the radiative 
diffusivity ranges from 2.33 × 1010 cm 2s –1 at a temperature of 1.003 × 104 Κ to 
3.504 × 1012 cm2 s–1 at the photosphere (Spruit 1977). We have, however, first 
 

27
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considered a constant radiative conductivity representing a ‘mean’ value, in order to 
understand the physical effects produced by heat diffusion. We shall also briefly 
describe results of a single calculation involving a variable diffusivity at the end of this 
section. 
 
 

5.1 Effect of Lateral Heat Exchange 
 
The results were all obtained in dimensionless units with the reference units that were 
defined in Paper I. In those dimensionless units, the radiative conductivity was 0.001 
which is representative of a layer ~ 200 km below the photosphere. Since the term
representing lateral heat exchange in Equation (15) depends inversely on the area of 
cross-section of the tube, we shall first look at the effect of tube radius on the
development of the instability. 

Fig. 1 shows the time variation of longitudinal velocity at z = 0.48 for β0 = 6.0, for 4 
values of r0, the tube radius. We see an oscillatory behaviour for the velocity. The 
oscillations have nearly the same period of ~ 12 units for all values of r0. The 
amplitude seems to be large for r0 = 0.5. For smaller values of r0 we find that after 
some time the gas pressure inside the tube exceeds the external gas pressure making the 
magnetic field vanish in the slender flux tube approximation. Thus, the calculations 
could not be extended for these cases. Fig. 2 shows the behaviour of β, the ratio of gas 
pressure to magnetic pressure inside the tube, at z= 0.48 as a function of time for 
different values of r0. The behaviour of β is essentially similar to that of velocity except 
 

Figure 1. Time dependence of velocity at z = 0.48 in an ‘open’ tube, for β0 = 6.0 and different 
values of radius r0, laterally exchanging heat with its surroundings. 

–

–
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Figure 2. Variation of β with time in the tube considered for Fig. 1. 
 

for the phase. We notice transient intensification of the field to values of β as low as 1.0.
The stabilizing influence of the initial magnetic field can be seen in Fig. 3. Here the

velocity at z = 0.48 in a tube of radius r0 = 0.5 is plotted as a function of time for 
different values of β0. There is no discernible change in the period of oscillations but the 
amplitudes are considerably affected as can be seen from the low values for β0 = 4.0 
compared to those for larger β0. 
 

5.2 Effect of Longitudinal Heat Transport 
 
Let us now consider the effect of longitudinal heat transfer with constant heat 
conductivity on convective instability. We, therefore, retain only the first two terms on 
the right-hand side of Equation (15). In a rigorous sense, the character of the system of 
differential equations changes here from hyperbolic to parabolic due to the appearance 
of the second derivative of temperature. We shall, however, continue to regard the 
system as hyperbolic and treat the derivatives of temperature as ‘source’ terms. These 
source terms were calculated on the previous time-line using a standard IBM 
subroutine for numerical differentiation. Such a procedure does not cause serious 
problems as long as the thermal conductivity is small. Figs 4 and 5 show the temporal 
behaviour of velocity and plasma-β in a tube with β0 = 6.0 and 4.0 respectively, with r0
= 0.5. One notices three facts, viz. the presence of overstability, the smaller period of 
oscillation and the greatly diminished amplitude of oscillation as compared to the case 
with lateral heat exchange alone. Compared to this, the differences between the case of
lateral heat exchange alone and the adiabatic case are rather small. This indicates that
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Figure 3   Dependence on ß0 of the time development of velocity in a tube of radius r0 = 0.5.
 

Figure4. Time dependence of velocity (dashed curve)and β (solid curve)at z = 0.48 in an open
tube with heat transport and with β0 = 6.0. 
 

longitudinal heat transport has a greater effect on the convective instability of a flux 
tube with r0 = 0.5. However, one cannot predict the relative importance of longitudinal 
heat transport on thinner tubes. In the context of solar photospheric magnetic fields, it 
is also interesting to see that intensification of such tubes by convective instability with 
heat transport would most probably be transient and would be accompanied by only 
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Figure 5. Time dependence of velocity (dashed curve) and β (solid curve) at z = 0.48 in an open 
tube with heat transport and with β0 = 4.0. 
 
 
small and oscillatory flows. Here the calculations were not continued beyond t  30
and, therefore, we do not know the saturation amplitudes of the overstability. However, 
t  30 corresponds to  1000 s for tubes with base temperature Tb = 104 K. Therefore, 
other processes such as granulation might interfere with the development of the 
overstability within this time. 
 
 

5.3 Effect of α Variable Heat Conductivity 
 
Below the solar photosphere the heat conductivity is not constant but varies by a few 
orders of magnitude as mentioned earlier. In order to study such a situation we need to 
first calculate a static equilibrium model for the environment of the flux tube with such 
a variable conductivity. For this we first calculated the opacity by obtaining a least- 
squares fit for the relation 
 

(24) 
 

using Spruit’s (1977) values for k , ρ and Τ. Here, p0 = 3.126 × 105 dyn cm –2 and 
T0 = 1.003 × 104 Κ corresponding to a depth of 1.779 × 102 km in the model.
We obtained 
 
 

From Equations (6), (7) and (24) one can write Κ as a function of p and T. Further, we
simultaneously solve the static energy equation 
 

(25) 
 

≃ 

≃ ≃ 
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Figure 6 Initial hydrostatic state for a tube’s environment (po,To) where heat transport is solely 
by radiation with opacity varying as k = ko(T/To)12 (p/po)–0 65. 
 
and the equation of hydrostatic pressure balance, 
 

(26) 
 

using an Adam’s predictorcor-rector algorithm to obtain the equilibrium state which is 
given in Fig. 6. One should notice that the thickness of the layer between temperatures 
104 Κ and 0.6 × 104 Κ in Fig. 6 is smaller than the corresponding thickness in Spruit’s 
model because we have entirely ignored the convective transport of heat. 

We can now calculate the initial state of the tube from the equilibrium state of its 
environment using the condition of horizontal pressure balance and by assuming 
T e = Ti (see Roberts & Webb 1979). In this particular case we chose ßo = 6.0.This initial 
state was perturbed with a small initial velocity perturbation and the evolution of the 
flow was studied using the complete energy Equation (15). The development of the flow 
at two spatial points is shown in Fig. 7. There is once again oscillatory behaviour with a 
larger frequency and smaller amplitude as compared to the cases of constant 
conductivity. This calculation does not have direct relevance to the solar convection 
zone because of the neglect of convective transport in the environment of the tube. 
However, the general trend of oscillatory behaviour is seen even for this case. Another 
interesting feature of this calculation is the systematic flattening of the spatial profile of 
temperature gradient with time as seen from Fig. 8. However, one does not know from 
a single calculation whether the general tendency of heat transport is to smoothen out 
the variations in the temperature gradient. 

 
 

6. Discussion 
 
All these results, though not exhaustive, indicate that the general behaviour of 
convectively unstable flux tubes, in the presence of heat transport, is oscillatory. The 
change of period of oscillation on introducing longitudinal heat transport could be due 
to the excitation of a new mode or a new harmonic. The further decrease in period for 
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Figure 7. Variation of velocity in a tube embedded in an atmosphere given by Fig. 6 and with
ßo =6.0. 

Figure 8. Evolution of the spatial profile of temperature gradient within the tube considered for
Fig. 7. 
 
JAA—3 
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the case of variable conductivity could perhaps be due to the shorter length of the tube 
considered. 

Linear theory predicts both overstable fast modes and monotonically growing 
convective modes for sufficiently weak and laterally unstructured magnetic fields. The 
main result of the present work is to demonstrate that when nonlinear effects are 
considered, the interaction of convection and overstable modes leads to a net 
oscillatory behaviour within slender flux tubes. 

Furthermore, the intensification of the field is also transient and much reduced as for 
example in the case of ß0 = 4.0 with longitudinal heat transport. On the other hand, it 
was seen that in the adiabatic case (Paper I) an ‘open’ flux tube with ß0 = 4.0 and a 
smaller initial superadiabatic gradient attained an intense steady state with β final    1.0
and downflow velocity  0.8 at z = 0.5. Thus, the heat transport has a stabilizing
influence apart from imparting an oscillatory behaviour. Furthermore, tubes with β0 
= 6.0,which corresponds to the ‘equipartition’field concentrated by convective eddies, 
are also not seen to collapse to very intense states in the present calculation. 

Thus the mechanism of concentration of flux tubes by convective collapse seems to 
become somewhat inefficient when heat transport is also included. Obviously it will be 
necessary to consider a realistic stratification for the initial state of the tube before one 
can confirm this fact and before one starts a search for alternative mechanisms of tube 
concentration. The use of realistic initial states would also help in the prediction of 
exact periods and amplitudes of the radiatively driven oscillations,* which will have 
important observational implications. 
 
 

Acknowledgement 
 
The author thanks Dr. M. H. Gokhale for numerous discussions. The use of an 
interpolation programme developed by Mr.A. V. Raveendran and of a programme to 
solve ordinary differential equations using Adam’s predictor-corrector algorithm 
developed by Mr. P. M. S. Namboodiri is also gratefully acknowledged. 
 
 

References 
 
Antia, H. M., Chitre, S. M. 1979 Solar Phys., 63, 67. 
Chandrasekhar, S.1961,Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford 
Defouw, R. J. 1970, Solar Phys., 14, 42. 
Hasan, S. S. 1984, Astr, Astrophys., (in press). 
Kato, S. 1966, Publ. astr. Soc. Japan, 18, 201. 
Roberts, Β. 1976, Astrophys. J., 204, 268. 
Roberts, Β., Webb, Α. R. 1978, Solar Phy., 56, 5. 
Spruit, H. C. 1977, PhD Thesis, University of Utrecht. 
Venkatakrishnan, P. 1983, J. Astrophys. Astr., 4, 135 (Paper I). 
Webb, A. R., Roberts, B. 1980a, Solar Phys., 68, 71. 
Webb, A. R., Roberts, Β. 1980b, Solar Phys., 68, 87. 
 
 
 
* Recent results for solar flux tubes laterally exchanging heat with their surroundings (Hasan 1984) do show 
overstability similar to the polytropic tubes, but vertical transport of heat is yet to be considered there. 

≃ 
≃ 



J. Astrophys. Astr. (1985) 6, 35–47 
 
 
 
 
 
Interstellar Scintillation Measurements of Pulsars at 326.5 MHz 
 
V. Balasubramanian Radio Astronomy Centre, Tata Institute of Fundamental Research, 
P.O.Box 8, Ootacamund 643001 
S. Krishnamohan Radio Astronomy Centre, Tata Institute of Fundamental Research, 
P.O. Box 1234, Bangalore 560012 
 
Received 1984 May 30; accepted 1984 November 27 
 

Abstract. We have measured the decorrelation frequency (fv) and decorre-
lation time (tv) for 15 pulsars. We show by combining our data with those of 
others that fv ∝ DM–1·79±0·14 and tv ∝ DM–0·80±0 15 up to a dispersion 
measure (DM) of about 60 cm–3 pc. The combined data set does not form a 
complete sample, but the relations obtained from our measurements on 14 
pulsars, which form almost a complete sample up to 41 cm –3 pc, are 
consistent with the above relations, suggesting that these relations are not
seriously affected by selection effects. The relations are broadly in agreement
with those expected from a homogeneous interstellar medium and are in 
disagreement with earlier conclusions by others that these relations steepen 
even for low-DM pulsars. The agreement suggests that the local interstellar 
medium is homogeneous at least up to a distance of about 2 kpc. 

 
Key words: pulsars, interstellar scintillations–interstellar medium 

 
 

1. Introduction 
 
Pulsars have been used as probes of the interstellar medium (ISM) to study the 
distribution and the turbulence of thermal electrons (see, e.g. Armstrong, Cordes & 
Rickett 1981; Vivekanand & Narayan 1982). The electrons cause different radio 
frequencies to travel at different speeds and the fluctuations in the electron density 
scatter the radio waves. At metre wavelengths the scattering is strong, i.e., the
modulation index of the intensity fluctuations due to scattering is close to unity and the 
decorrelation frequency of these fluctuations is much smaller than the frequency of 
observation. The relative motion between the observer, the ISM, and the pulsar causes 
the observed intensities to be decorrelated over a finite length of time. These effects, 
called interstellar scintillations (ISS) have been so far detected only in the case of 
pulsars. As the scattered waves take more time to reach the observer, pulses emitted by 
pulsars appear to be broadened. Scattering also leads to angular broadening of radio 
sources. This effect leads to paucity of small-angular-diameter sources at low galactic 
latitudes when observed at metre wavelengths. The angular broadening has 
been studied by several workers using IPS and VLBI techniques (Mutel et al. 
1974; Duffett–Smith & Readhead 1976; A. Pramesh Rao & S. Ananthakrishnan
1984). ISS parameters measured by using pulsars help in interpreting such 
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angular size measurements. ISS measurements are also important in judging the 
significance of the absence of ISS of extragalactic radio sources showing low-frequency 
variability (Cordes 1982; Dennison 1982). Lyne & Smith (1982) have shown that the 
velocities of pulsars derived from ISS measurements are consistent within a factor ~ 3
with their proper motions obtained by using radio interferometry. Velocity is an 
important parameter of pulsars as values of velocities are needed in deriving ages and 
hence birthrates of pulsars. Apart from the above, ISS measurements are evidently 
needed for modelling the ISM. 

Measuring the decorrelation time and frequency is a difficult task due to the presence 
of broadband intensity variations and due to the long observing time needed on each 
pulsar (see, e.g. Roberts & Abies 1982). The origin of broadband intensity variations, 
though not yet established, is unlikely to be the conventional ISS. Sutton (1971) and 
Krishnamohan & Balasubramanian (1984) presented methods to take into account the
broadband variations in the measurement of decorrelation frequency and decorre-
lation time respectively. We used these methods in arriving at the results presented in
this paper. 

The dependence of decorrelation frequency (or a related quantity—the pulse 
scattering broadening) and decorrelations time on the dispersion measure (DM) has 
been used to study the interstellar medium. The two competing models for the power 
spectrum of the electron density irregularities, the Gaussian and the power-law 
spectrum, predict slightly different dependences (see Rickett 1977 for a review). Among 
the power-law spectra, one with an index of 11/3—called the Kolmogorov spectrum–– 
received much attention as it is supposed to naturally arise whenever disturbances that 
are smaller in scale size are fed by larger ones. Several authors, beginning with Sutton 
(1971), had inferred that the observed dependences on DM are much steeper than those 
expected from the theory. Inhomogeneity of the interstellar medium is one of the often 
used explanations for the observed discrepency. The analysis presented in this paper 
shows that there is no disagreement atleast upto a DM of 60 cm– 3 pc. This implies that 
the local interstellar medium is homogeneous at least up to a distance of about 2 kpc. 
 
 

2. Observations 
 
The observations were done with the Ooty Radio Telescope mostly during 1976 to 
1978. The telescope operates at 326.5 MHz. The observations were done with a 12-
channel system with filters whose bandwidth can be set to either 300 kHz or 50 kHz. 
The separation between the centre frequencies of the adjacent channels was also either 
300 kHz or 50 kHz, with the exception that the frequency separation between the last 
three channels for the 50 kHz filters was 500 kHz. The 50 kHz filters were used mainly 
for observing pulsars with dispersion measure(DM) larger than about 35 cm–3 pc. The 
RC time constant was 3 ms and each channel was sampled every 2 ms. From the data 
acquired using a general purpose programme, two data arrays per channel are formed. 
The first array contains averaged ONPULSE values for a given channel. The averaging 
is done, after subtracting base levels, over 2 to 32 consecutive pulses to reduce the 
fluctuations due to pulse-to-pulse intensity variations. The base levels are determined 
by averaging samples over a duration comparable to ONPULSE duration midway 
between adjacent pulses. The second array contains the averaged OFFPULSE values 
which are formed in a similar manner from the samples on either side of the pulse. 
 



Interstellar Scintillations 37
 

2.1 The Sample 
 
At the time of observation, 157 pulsars were known. We selected, for ISS studies, the 
pulsars that satisfied the following criteria: (i) the declination (δ) of the pulsar is within 
the range of the telescope, i.e. – 32°    δ     32°,and(ii) the listed average flux density of
the pulsar gives at least a signal-to-noise ratio of 5 when 1000 pulses are averaged using
the 12-channel system. Out of the 40 pulsars that satisfied the criteria, 6 could not be 
observed as they were too weak to observe at that time. In addition, PSR 0950 + 08 was 
also dropped out from the observations as the available total bandwidth of ~ 3.6 MHz
is not sufficient to measure its decorrelation bandwidth. Rest of the 33 pulsars were
observed for durations ranging from an hour to 18 hours. 

16 out of the 33 pulsars have DM less than or equal to 41 cm –3 pc and the rest more 
than 41 cm–3 pc. Even the 50 kHz filters proved to be too wide to observe the ISS of 
pulsars with DM greater than 41cm–3pc except for PSR 1749 – 28.Two of the pulsars 
with DM less than 41 cm–3 pc did not show measurable ISS effects when observed with 
the 300 kHz filters (PSR 1822 – 09) and 50 kHz filters (PSR 1857 – 26). Thus we could 
estimate the ISS parameters for only 15 out of the 33 pulsars observed. In the later 
analysis of the measurements on this sample, we exclude PSR 1749 – 28 for the reason
given at the end of Section 5.1. Thus out of the flux-and dispersion-measure-limited 
sample of 16 pulsars, we have good measurements for 14 pulsars. As the dispersion 
measures of the other two pulsars are well separated, the 14 pulsars form almost a 
complete sample of pulsars up to a DM of 41 c m –3 pc for the purpose of the later 
analysis. 
 
 

3. Determination of decorrelation frequencies 
 
The cross-correlation function (CCF), γ '1j ,  between the intensities in the first and the jth
channel is given by 
 
 
 
where I1 and Ij are the mean subtracted ONPULSE intensities and σ2 and σ are the
variances of I1 and Ij respectively. The γ ',computed as above, carries errors from the
following sources: (a) receiver noise, (b) broadband intensity variations, and (c) finite 
bandwidth and overlapping of filter passbands. 

The noise-corrected CCF, γ 1j is given by 
 

(1) 
 
 
 

where β 1j is calculated from OFFPULSE values in a way similar to γ1j, and σjn 
2  are the 

variances computed from OFFPULSE values. Not all β1j , j  ≠ 1 are equal to zero as
filter passbands overlap. Since for a given filter bank β1j do not depend on the pulsar, 
we used average values obtained from all the observations done with the filter bank. For 
the 300 kHz filter bank, the values of β1j so obtained are 0.35,0.12 and 0.07 for j = 2,3 
and 4, and 0 for j  5. For the 50 kHz filter bank, β12 = 0.15 and  1j = 0 for j  3. The
50 kHz filters are designed better and hence have less overlap. 

1

 

j
2

β 
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It should be noted that Equation (1) takes into account the instrumental correlation 
introduced through the noise due to the overlap of filter passbands, in addition to 
correcting the signal variances. As pointed out by Roberts & Ables (1982) and 
Armstrong & Rickett (1981) the overlap of filter passbands introduces instrumental 
correlation through the signal also. We take into account this aspect of the instrumental 
correlation in estimating the decorrelation frequency as discussed in Section 3.1. 

The γ1j, in general, do not settle down to zero even for large values of j as would be 
expected if ISS alone were present. Γ1j, the CCF corrected for the broadband 
fluctuations giving rise to the non-zero base level (p) in γ 1j , are obtained by
renormalizing g1j as follows (Sutton 1971): 
 
 
 

As discussed in Section 3.1, applying the correction is not easy since getting the value of
p is difficult with a limited number of channels.
 

3.1 Model Fitting 
 
We have estimated decorrelation frequencies from Γ1j by a model-fitting procedure. The 
model Q1j are obtained numerically from the normalized coherence function ΓD of Lee 
& Jokipii (1975) for monochromatic waves. As discussed by Lee (1976), the finite 
bandwidth effects can be incorporated by calculating Q1j as, 
 
 

(2) 
 
 

where the band width-affected rms values σ’j of the intensity fluctuations due to ISS are 
given by 
 
 
 
 

fv is the decorrelation frequency defined as the frequency separation at which the 
correlation coefficient falls to 0.5 if the observations were done with zero bandwidth, 
and Gj(ν) is the intensity response of the filter number j. 

In arriving at Equation (2), the effect of pure refraction has been neglected. Lee 
(1976) shows that refraction is negligible for Gaussian density spectrum and gives
justification for neglecting it even for a Kolmogorov spectrum of density fluctuations.

The models are calculated for different fv for both the Gaussian and Kolmogorov 
spectra. A few of the models for the 300 kHz filters and Kolmogorov spectrum are
shown in Fig. 1 to illustrate the effect of finite bandwidth on the measurement of f v.

It can be seen from the figure that the expected correlation coefficient remains high 
(say  0.1) if the frequency separation is less than about four times the decorrelation
frequency. It should be noted that the slowness of the fall in correlation is inherent to 
the scintillation process and is not due to either the overlap or the finite bandwidth of 
the filters. Since the correlation remains high, unless the frequency separation is large 
compared to the decorrelation frequency, judging the value of ρ due to non-ISS 
intensity fluctuations is prone to errors. At the same time, the estimate is unlikely to be 
grossly wrong as illustrated by the dashed curve in Fig. 1, which shows the 
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Figure 1. Model correlation functions for various decorrelation frequencies (solid curves). Each 
function is labelled with the assumed decorrelation frequency. The dashed curve shows the effect 
of renormalization if a wrong pedestal value is assigned. 
 
 
renormalized correlation function obtained if the value of ρ for fv= 1320 kHz is wrongly 
judged to be 0.28 when it is actually equal to zero. The curve runs across a series of 
theoretically expected curves and hence a good fit is not possible, indicating that a 
wrong p is subtracted. 

The model fitting is done by minimizing χ2 which is defined as 
 

(3) 
 
 

One has to be careful in assigning the weights W1j. Purely statistical weights are given 
by (Johnson & Kotz 1970) 
 

(4) 
 

where n c is the number of ISS cycles in the data. These weights change very rapidly as 
Q1j changes from close to 1 to lower values. Thus the first few terms of Equation (3), in 
general, dominate the minimization procedure rendering the procedure insensitive to 
the correlation values at large frequency separations. This is not a satisfactory situation 
as any systematic effects present would make fv estimates erroneous. On the other 
hand, one cannot assign equal values to all W1j as the statistical errors are widely
different. As a compromise we have readjusted the weights such that W1j is not more
 than 0.5 ∑ W lK . If W1j given by Equation (4) satisfies this condition, it is left
 unchanged, otherwise it is set equal to 0.5 ∑ W1K· This scheme of modifying the 

 weights is not unique. We adopted it since it modified only Wl2 and sometimes W13 

(i.e., very few weights) without allowing any single weight to dominate the fit.
We found that the statistical errors on the measured values of Γ1j are too large to

distinguish between Gaussian and Kolmogorov spectra. Even if the errors were smaller, 

 

12

K=j+1 12

k = j+1
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discriminating between the two spectral laws on the basis of fv would not have been 
possible as the numerically computed values may carry significant errors (Lerche 1979). 
 
 

4. Determination of decorrelation times 
 
We define decorrelation time, tv , as the time lag at which the correlation coefficient due 
to ISS falls to half its zero lag value if the observations were done with zero bandwidth. 
Receiver noise, broadband intensity variations and finite bandwidth of the filters affect 
the measured correlation coefficients. Multiplying the non-zero lag coefficients by 
σ2/(σ2 – σn 

2 ), where σ2 and σn 
2  are the variances calculated from the ONPULSE and 

OFFPULSE values respectively, corrects the coefficients for the receiver noise. 
The correction for broadband intensity variations depends on the timescale of the 

variations.If the timescale is either very short or very long compared to that of ISS, then 
it is possible to correct for broadband variations from single channel observations; 
otherwise it is not. As pulsars exhibit intensity variations over several timescales 
ranging from a few microseconds to a few years, they probably also have significant 
variations with timescales similar to those due to ISS. To overcome this difficulty, 
Krishnamohan & Balasubramanian (1984) have developed a method to separate the 
autocorrelation function of ISS from that of broadband intensity variations using 
multichannel data. The method is based on the assumption that the decorrelation 
frequency of ISS is much smaller than that of broadband intensity variations. It may 
not work satisfactorily if narrowband intrinsic intensity variations exist. Such 
variations are suspected for PSR 0950 + 08 (Roberts & Abies 1982). We have subjected 
correlation functions of 11 pulsars to this method, after correcting them for the 
presence of receiver noise. The decorreation times listed in Table 1 are obtained from 
the correlation functions of ISS as separated out by the above method. They are 
corrected for finite bandwidth effects also, by multiplying by a correction factor. The 
correction factor depends on the ratio of the bandwidth used and the decorrelation 
frequency due to ISS. To obtain these correction factors, we have used the curve in 
Fig. 7 of Lee (1976), which is appropriate for Kolmogorov spectrum. Corrections 
appropriate for Gaussian spectra are only marginally different. 
 
 

5. Results 
 

5.1 Our measurements 
 
The measured decorrelation frequencies and times are listed in Table 1. All the 
quantities have been corrected for finite bandwidth effects. All the decorrelation 
frequencies and a majority of the decorrelation times have also been corrected for any 
broadband intensity variations present in the data. Magnetic tapes containing the data 
on pulsars whose decorrelation times are marked with asterisk (*) were inadvertently 
erased prior to separating the correlation functions due to broadband and narrowband 
intensity variations, and hence their decorrelation times are not corrected for 
broadband variations. Filter widths listed in Col. 3 refer to the bandwidths of 
individual filters and hence the total bandwidth is 12 times as large. Col. 5 gives the 
observing time spent on each pulsar. If a pulsar is observed on more than a day, the time 
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Table 1.  Observational parameters and results for 15 pulsars. 

* Decorrelation time is not corrected for broadband intensity variations. 
 
 
listed is the total time the pulsar is observed on all the days. The last column lists quality 
factor which is the approximate number of independent samples that went into the 
determination of decorrelation frequency and decorrelation time. It is computed as 
follows: 
 
 
 
 

Even when f v is smaller than the filter bandwidth, each filter gives only one independent
frequency sample. This is taken into account by using either filter bandwidth or f v,
whichever is larger. We expect the statistical errors on our measurements to be small as 
the quality factors are large. Though we measured a definite value for the fv of PSR 
1749 – 28 following the method given in Section 3, we enclose it in parentheses as the 
filter bandwidth used for measuring it is too large compared to f v . Comparison given in 
the next section, of our values with those measured by others shows that fv and tv can 
be measured reasonably well even if the filter width is several times fv . 
 

5.2. Comparison of our fv and t v Values with Others 
 
In Tables 2 and 3, we compare our measurements of fv and tv with those by others. We 
have included only those authors who had at least four of our pulsars in their list. All 
measurements are scaled to 326.5 MHz using t he scaling laws:fv ∝ v4 and tv ∝ v where 
ν is the frequency at which the observation is done. Use of scaling laws corresponding to 
a Kolmogorov spectrum (fv ∝ v4 4, tv ∝  ν1 2) does not change our conclusions. All the
values are converted to values where the correlation coefficient falls to 0.5 by assuming a 
Gaussian shape for the correlation function. Rickett (1970) measured half-visibility 
bandwidth Bh , i.e., the bandwidth for which the modulation index falls to half of that 
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Table 2. Comparison of fv (in kHz) measured by us with those by others. 
 

 
 

References: 
BK: Balasubramanian & Krishnamohan: this paper. 
AR: Armstrong & Rickett (1981). 
RA: Roberts &Abies (1982). 
LS:Lyne & Smith (1982). 

R: Rickett (1970). 
L: Lang (1971). 

 
 
 

Table 3. Comparison of tν (in seconds) measured by us with those by 
others. 

* tv of PSRs 1237 + 25 and 2020 + 28 are excluded in the computation since 
Backer’s data had less than five scintillation cycles for these pulsars. 

 

References: 
B: Backer (1975) See Table 2 for other references. 
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when observed with zero bandwidth. We have taken the conversion factor from Lee 
(1976), Bh ~ 10 fv , taking into account the difference in the definition of the 
decorrelation frequency also. 

The purpose behind the comparison is to check whether the methods followed by 
different authors for measuring these parameters give results consistent with each other 
or not. Since the parameters measured at different times for the same pulsar by the same 
authors could differ by a large factor (Roberts & Abies 1982), it is difficult to check the 
consistency by comparing the values of a single pulsar. So, we have included in the 
tables the mean ratio of values measured by us and by others. The errors listed are one 
standard deviation errors. The fv measurements by Armstrong & Rickett (1981), 
Roberts & Abies (1982), and Lyne & Smith (1982) are consistent with ours as the mean 
ratios are close to one within about a standard deviation. Though the error is large, Bh 
values of Rickett (1970) seem to underestimate the values of fv . We do not know 
whether it is caused by the conversion formula that we adopted from Lee (1976) or by 
the difficulties in measuring Bh values themselves. Lang (1971) had clearly over-
estimated fv values by a factor of two. This could partly be due to noncompensation of 
finite bandwidth effects in his procedure. tv measurements of Roberts & Abies (1982) 
and Backer (1975) are consistent with ours. Though tv of Lyne & Smith (1982) are larger 
than ours by 20 per cent, the deviation may not be significant. 

The larger scatter in the ratios of fv values compared to the ratios of t v values is
consistent with the observation of Roberts & Abies (1982) that fv of a pulsar varies by a
larger factor than tv when observed on different days.
 
 
 

6. Discussion 
 
To study the dependence of ISS on DM we have combined our data with the 
measurements presented in the papers referred to in Tables 2 and 3. These measure- 
ments are converted to those corresponding to where the correlation coefficient falls to 
0.5 and then multiplied by the average ratios obtained in Tables 2 and 3 to make them 
mutually consistent. We pooled in all, fv values for 28 pulsars and tv values for 31
pulsars including our measurements. In plotting Figs 2 and 3, values obtained by 
averaging the measurements by different authors rather than our measurements alone 
have been used. This, we believe, leads to more stable values. The pooled values along
with the references to the origin of the data are given in Table 4 for easy reference.

The three points in Fig. 2 corresponding to PSRs 0628 – 28,0833 – 45 (the Vela), and 
1933 +16 seem to deviate significantly from the general trend of the other points. It is 
debatable whether one more point (at fv = 3400 kHz) corresponding to PSR 0809 + 74 
also deviates from the rest. If the three labelled points are excluded, the best fit is given 
by fv (kHz) = 18840 DM–1·79±0 14. Log fv and log DM have a linear correlation 
coefficient of – 0.90. It is known that the Gum nebula causes excessive scattering in the 
case of the Vela pulsar. (Backer 1974; Lee & Jokipii1976). In the case of PSR 1933+ 16, 
the deviation may be due to the steepening of fv –DM relationship at large DM as
discussed later. In the case of PSR 0628 – 28, the scattering is too low. The error bar 
given in Fig. 2 is on the basis of six independent measurements that are available for this 
pulsar. If PSR 0628 – 28 is included in the fv – DM fit, the best fit is given by fv (kHz)
= 16070 DM–1·70±0 14 and the correlation coefficient reduces to – 0.87. 
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Table 4. Averaged values of f v and tv with references to the original data. Refer to Sections 5.2
and 6 for details regarding the selection of pulsars for inclusion in the table and the procedure
adopted to make different measurements mutually consistent before taking averages. See
Tables 2 and 3 for notations used in references. 

 
 

It is interesting that the exponent (β) is approximately within the errors of what is 
expected from a homogeneous ISM. If the density fluctuations have Gaussian 
spectrum, the value of β is expected to be – 2; if it has a Kolmogorov spectrum β is 
expected to be – 2.2. 

By translating pulse broadening (τν) measurements of pulsars with large dispersion 
measure using the relationship 2π fν τν = 1, Sutton (1971) inferred that β = – 4 
describes his data better. Slee, Dulk & Otrupcek (1980) have shown that the steepening 
is not caused by the breakdown of 2π fντν = 1 relationship by directly verifying it on the 
Vela pulsar and also by showing that β = – 3.3 ± 0.5 even if only direct measurement of 
τν are used. Since τν values are measured for large DM pulsars, it is possible that the 
fv – D M relationship steepens for large DM pulsars. Our conclusion differs from that by 
Slee, Dulk & Otrupcek (1980) who concluded that the fv – DM relationship does not 
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Figure 2. The relationship between the decorrelation frequency and dispersion measure. The 
three labelled measurements deviate significantly from the general trend shown by others. The 
best fit obtained by ignoring them, fv ∝  DM–1·79, is shown by a straight line. 
 
 
depend on the DM range of the pulsars used. Our result implies that the average
scattering properties do depend upon the DM range. 

The tv – DM diagram given in Fig. 3 shows that only three pulsars, i.e. the Vela,
PSRs 0540 + 23 and 1933 + 16 deviate significantly from the general trend. These
 
 
JAA-5 
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Figure 3. The relationship between the decorrelation time and dispersion measure. The three 
labelled measurements deviate significantly from the general trend shown by others. The best fit 
obtained by ignoring them, tv ∝ DM-0 80

,
 is shown by a straight tine. 

 

three pulsars are excluded in the least-squares fit. The best fit is given by tv(s) = 1800 
DM –0 80±0 15. Log tv and log DM have a linear correlation coefficient of – 0.79. The 
correlation is less tight in tv–DM diagram compared to fv–DM diagram probably due 
to the difference in the velocity of different pulsars. From an analysis of 28 pulsars, 
Backer (1975) found that tv ∝ DM–0s to –1 5 Our analysis gives less range to the 
exponent probably due to our taking average values where more than one independent 
value is available. The expected relationship is tv. ∝ DM –0 5 for a Gaussian spectrum 
and tv ∝ DM – 0 6 for a Kolmogorov spectrum. Thus our tv–DM relationship is also in
broad agreement with the theoretical expectations. 

The pooled data do not form a complete sample and hence the results obtained from 
them are likely to be biased. To check the seriousness of the likely bias, we analysed 
separately the values measured by us on the 14 pulsars. As discussed in Section 2.1, the 
14 pulsars form almost a complete sample up to a DM of 41 cm –3 pc. The analysis gave 
fv (kHz) = 13280 DM 1 62 ±0 24 with a log fv, and log DM linear correlation coefficient of 
– 0.72, and tv (s) = 1120 DM 0 66±0 24 with a log t, and log DM linear correlation 
coefficient of – 0.57. As these results agree––within the error limits—with those 
obtained from the pooled data the biases are unlikely to be serious. The pooled data 
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used for arriving at DM dependences have pulsars up to a DM of about 60 cm –3 pc, 
with only two pulsars having DM beyond that value.As the relations obtained from the 
pooled data are likely to hold good at least up to a DM of 60 cm–3 pc,the local 
interstellar medium is homogenious at least up to a distance of about 2 kpc. 
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Abstract.   To form the Hubble diagram for quasi-stellar objects (QSOs),we
have made use of the recently published data on X-ray fluxes of 159 QSOs 
observed from the Einstein Observatory. The scatter in the Hubble diagram 
and the lack of an obvious redshift-flux density correlation for these QSOs 
have been attributed to the observational selection effect that the intrinsically 
less luminous QSOs can be detected only in the nearby region of space. When 
the optical, radio and X-ray selection effects are removed, keeping only the 
intrinsically brighter sources, we obtain a sample of 16 QSOs having a small 
dispersion in X-ray luminosities (〈 log Lx 〉  = 46.12 ± 0.28), a statistically 
significant linear correlation between (log fx, log cz) pairs and a slope A = 
–1.906 ± 0.061 of the linear regression of log fx on log cz. This slope is 
consistent, at a confidence level of 95 per cent or greater, with the slope of 
–2.0 expected theoretically based on the assumption that the redshifts of
QSOs are cosmological in nature. 

 
Key words: quasistellar objects—Hubble diagram—cosmology—Xrays
 

 
1. Introduction 

 
The Hubble diagram for quasi-stellar objects (QSOs) has been investigated by a 
number of authors, Sandage (1965) and Schmidt (1968) being among the first. In the 
optical as well as radio region it turns out to be a scatter diagram, with no obvious 
correlation between apparent magnitude and redshift for all QSOs. However, the 
following observational facts complicate the interpretation of the Hubble diagram: 
(i) some QSOs are variable; (ii) the known QSOs have a broad range of luminosities; 
and (iii) the intrinsically faint QSOs can be detected only if they are relatively nearby, 
whereas one needs to sample larger volumes of space to detect the intrinsically brighter 
ones. All these effects presumably produce the observed scatter in the Hubble diagram. 
Various attempts have therefore been made to reduce the scatter and obtain evidence 
for the cosmological interpretation of QSO redshifts. Following the example that the 
brightest members of clusters of galaxies exhibit a tight Hubble relation (Sandage 
1967), McCrea (1972) suggested that the brightest QSOs at each redshift might also 
display a significant Hubble relation. Attempts to reduce the scatter in the Hubble 
diagram due to optical variability was made by Usher (1975, 1978) and more 
recently by Pica & Smith (1983). Bahcall & Turner (1977) and Setti & Zamorani (1978) 
took account of the large spread in the optical luminosities and the evolution of the 
luminosity function of QSOs. Kembhavi & Kulkarni (1977) found that the intrinsic 
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luminosities of the brightest QSOs increases with z for z < 1 (volume effect), and that 
one obtains a consistent Hubble relation for z > 1. One concludes from these 
investigations that the brightest QSOs conform to the Hubble relation, particularly 
when one corrects for the variability, volume effect and cosmological evolution. 
Furthermore, Lang et al. (1975) and Thakur & Sapre (1978) have emphasized the 
importance of applying proper K-corrections to observed visual magnitudes of QSOs 
in forming a significant Hubble diagram. Attempts have also been made to isolate 
subsets of QSOs based on physical properties. Netzer, Yahil & Yaniv (1978) found a 
strong correlation for QSOs with flat optical continuum whereas Setti & Woltjer (1973) 
have claimed a Hubble relation for QSOs with steep radio spectra. 

Since the QSOs as a class are luminous X-ray emitters (Tananbaum et al. 1979), and 
the X-ray variability by ∆ log fx > 0.3 is rather rare (Zamorani et al. 1984), it would be 
of interest to examine the Hubble diagram using their X-ray fluxes. We proceed to do so 
in the following. 
 
 

2. Data analysis and results 
 
We have compiled the data on X-ray fluxes of QSOs from the available literature. Our 
sample consists of 19 X-ray selected (‘serendipitous’) QSOs from Reichert et al. 
(1982), 79 detected QSOs from Zamorani et al (1981), 19 X-ray selected QSOs from 
Grindlay et al. (1980),35 detected QSOs from Ku, Helfand & Lucy (1980) and 42QSOs 
from Tananbaum et al. (1979), with some degree of overlap between different lists. We 
exclude from the sample the QSO 0100 + 0205 of Ku, Helfand & Lucy since its redshift 
is uncertain,and QSO 1227 + 0224 of Tananbaum et al. for which the visual magnitude 
is not available. Thus we obtain a final sample of 159 QSOs detected in the energy band
0.5–4.5 keV.Of these, 110 are radio-loud QSOs and 49 radio-quiet serendipitous QSOs.

Though the values of observed X-ray fluxes have been given only in Tananbaum et al. 
(1979) and Zamorani et al. (1981), the values of Lx (erg s–1) in 0.5–4.5 keV energy band 
at the source, corrected for galactic absorption, are given for Friedmann cosmological 
model with H0 = 50 km s–1 Mpc–1 and q0 = 0 in all the six references cited above. 
Therefore, we have obtained the values of corrected f x (erg cm –2 s –1) in the fixed 
emitted energy band of 0.5–4.5 keV corresponding to the published values of Lx using 
the relation 
 

(1) 
 
The resulting Hubble diagram, i.e., the plot of (log cz, log fx) pairs is shown in 
Fig. 1. The correlation is rather poor, with a coefficient of only 0.536. 

Since the scatter in the diagram [σ (log Lx) ~ 0.8] is primarily due to a spread in
intrinsic luminosities than the errors in redshifts, it would be more meaningful to 
analyse the regression of log fx on log cz. In addition, we have analysed also the 
regression of log cz on log f x for the sake of comparison with similar analyses found in 
the literature. If the redshifts of the QSOs are cosmological in nature, then for a 
Friedmann universe with deceleration parameter q0 = 1, the Hubble diagram should 
yield a slope of –0.5 for linear regression of log cz on log f x and –2.0 for linear regression 
of log fx on log cz The observed slopes of both the regression lines listed in Table 1 are 
significantly different from the theoretically expected ones. The observed slope results 
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Figure 1. Plot of log fx against log cz for a sample of 159 QSOs. × : radio-quiet serendipitous
X-ray QSOs;☼ : QSOs free from the optical selection effect;      :QSOs free from the optical and 
radio selection effects; ⊕: QSOs free from the optical, radio and X-ray selection effects. 
 
 
mainly from the exposure effect in the sensitivity limit: the exposure times are raised for 
high-redshift QSOs, reaching thereby fainter sensitivity limits. Excluding 3C 273, the 
QSO with the highest fx, one may note in Fig. 1 that log fx (max) remains nearly 
constant with redshift up to log cz ~ 5.3, and is in approximate accordance with the 
Hubble law for higher redshifts. This behaviour mimics the one in optical region noted 
by Kembhavi & Kulkarni (1977), and certainly results from the volume effect. 

The volume effect is seen better in Fig. 2 which shows log LX1 (for Friedmann model 
with H0 = 50 kms–1 Mpc–1 and q0 = 1) versus log cz. The intrinsically faint X-ray QSOs
are clearly seen to have smaller redshifts whereas intrinsically very bright X-ray QSOs, 
being rare, can be detected only if greater and greater volume of space is sampled, i.e., 
for larger values of redshifts. Though Fig. 2 is in qualitative agreement with the results 
of Kembhavi & Kulkarni (1977) in the optical, the X-ray luminosities do not flatten out 
substantially even at large redshifts. It would appear that there is a larger intrinsic 
spread in X-ray luminosities than in the optical. In order to correct for the ‘volume 
effect’, we should consider only those QSOs which are observable at all redshifts. 
Following Burbidge & O’Dell (1973), we consider these to be the ones lying to the 
brighter side of the mean line with a slope of –2.0 in log f versus log z diagram. We 
apply this criterion in the optical, radio as well as X-rays since all the samples suffer 
from the volume effect and since fluxes in different wavebands appear to be correlated 
(see e.g., Zamorani et al. 1981). 

In the optical region, we have used the corrected visual magnitude mv and log cz. The 
observed visual magnitudes have been taken from Hewitt & Burbidge (1980) and are 
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duly corrected for galactic absorption; also the K-correction was applied following 
the procedure of Thakur & Sapre (1978). The Burbidge–O’Dell procedure, as employed 
here,implies an optical detectability limit mv = 21.5 mag, at z = 3.53. This leaves us 
with a sample of 68 optically bright QSOs which are shown in Figs 1 and 2 by 
circumscribed circles. Interestingly, all of these 68 are brighter also in the radio and X- 
rays. For this subset of the sample, the correlation coefficient has improved from 0.536 
to 0.671. Furthermore, the slope of the linear regression of log f x on log cz decreases 
from – 0.633 to – 1.310, relatively closer to though still significantly different from, the 
theoretically expected one. 

Similarly, in order to remove the radio selection effect we have analysed the corrected 
radio fluxes fr (erg cm –2 s–1) against redshift. The radio fluxes have been calculated for 
the 3.1–8.1 GHz band (at the source) from published 1.4 GHz fluxes and spectral indices 
following the prescription given by Schmidt (1968). With a similar analysis as before, we 
are left with a sample of 36 radio-bright QSOs which can be observed optically as well 
as in the radio at all redshifts up to z =3.53 with an implied radio detectability limit of 
log fr = –12.67. The correlation coefficient for this sample increases to 0.746, and the 
slope to –1.670. This sample of 36 QSOs has been displayed in Figs 1 and 2 by 
circumscribed circles with a vertical diameter. It is seen from Fig. 2 that the removal of 
radio selection effect further removes X-ray faint QSOs from the Hubble diagram, as 
expected from the observed correlation between radio and X-ray fluxes. 

A similar analysis for the X-ray fluxes leaves us with a sample of 16 QSOs that can be 
detected in all the three bands at all redshifts up to z= 3.53, with an X-ray detectability 
limit of log fx = –12.94. This sample is free from optical, radio and X-ray selection 
effects and is displayed in Figs 1 and 2 by open circles with an inscribed cross. We find 
that the sample of 16 QSOs is the sample of intrinsically very bright X-ray QSOs having a 
small spread in LX1(ergs–1): This sample has a mean 〈 logLXl 〉  of 46.12 ± 0.28, its only 
member in the nearby space being 3C 273. It is seen from Table 1 that the correlation 
coefficient for this sample has increased to 0.912 and the slope of the linear regression of 
log f x on log cz has decreased to –1.906 ± 0.061, very close to the theoretically 
expected one. The t-statistic shows at a confidence level of better than 95 per cent that 
the departure of the calculated slope from the expected one is not significant. On the 
other hand, the slopes of the linear regressions of log cz on log fx appear to be rather 
insensitive to this analysis, possibly since the spread in fx is still considerably larger than 
the errors in redshift estimates. 
 
 

3. Discussion 
 
An inspection of Figs 1 and 2 and Table 1 clearly shows that the X-ray Hubble diagram 
for the sample of 159 QSOs is a scatter diagram with small correlation. The departure 
of the slopes of the linear regressions from the theoretically expected slopes (assuming 
QSO redshifts to be cosmological in origin) is also significant at 0.01 level for this 
sample. Clearly this is due to the selection effects and a large dispersion in log LX1 as 
seen from the value given in Col.9 of Table 1.As pointed out in Section 2,when the 
optical, radio and the X-ray selection effects are removed we obtain a smaller sample of 
QSOs intrinsically brighter in all bands having a smaller dispersion in log LX1.As a 
result,the values of the correlation cofficient ‘r’ increases significantly.This sample of 
16 QSOs listed in Table 2 covers almost the entire range of redshifts in which  QSOs
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Figure 2. Plot of log LX1 against log cz for 159 QSOs. X: radio-quiet serendipitous X-ray
QSOs;☼ :QSOs free from the optical selection effect;:    QSOs free from the optical and radio 
selection effects; ⊕ : QSOs free from the optical, radio and Xray selection effects. For these 
16 QSOs σ log LX1 = ±0.28. 
 
have been detected, and yields a slope of ∆ log f x/Δ log cz that agrees with expected 
value of –2.0 at a confidence level   95 per cent. Thus, these QSOs offer the much-
needed standard candle in the X-ray luminosities. 

The optical, radio and X-ray luminosities (H0 = 50 km s–1 Mpc–1; q0 = 1) for the
sample QSOs are listed in Table 2, along with their mean values and dispersions. It is 
seen that the dispersions in log LV1 and log LX1 are small and comparable, whereas the 
spread in log Lr1 is still large. This suggests that the correlation between optical and X-
ray luminosities of QSOs is better than between either of these and the radio emission,
in agreement with the observations of Henriksen, Marshall & Mushotzky (1984). It 
would thus appear that the X-ray and optical emissions in QSOs may have a common 
origin. 
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Abstract. The energy spectra of primary cosmic rays were studied in the 
energy interval 150 to 450 MeV/nucl by using balloon-borne cellulose-nitrate 
solid-state plastic detector. Effects of solar modulation were studied using the 
theoretical spectrum of H1 nuclei near the solar minimum in 1964 as the 
demodulated spectrum. The ‘force-field’ potential which fit the experimental 
results was estimated to be 270 MeV/nucl. 
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1. Introduction 
 
The cosmic-ray nuclei suffer modulation due to the physical conditions, mainly 
electromagnetic, prevailing in the interplanetary space. Of the different variations, the 
eleven-year cycle of solar activity is of paramount significance in relating the energy 
spectra outside the interplanetary region to the one observed near earth. The variation 
of fluxes of heavy cosmic-ray nuclei during a solar cycle is observed to be small above 
energies of 600 MeV/nucl. In the present investigation, we have studied the solar 
modulation effect on heavy cosmic ray nuclei by using the ‘force-field’ solution
(Gleeson & Axford 1968), making use of the theoretical demodulated spectrum given 
by Paruthi et al. (1976). 
 
 

2. Experimental procedure 
 
We have used a stack of Daicell cellulose-nitrate solid-state plastic detector exposed to 
primary cosmic-ray nuclei for 10.66 h on 1969 June 27 from Fort Churchill, Canada, at 
a ceiling altitude of 2.8 gm cm –2 during the solar maximum. It may be noted that 
1969–70 was a period of the polarity reversal of the Sun (Howard 1974). The details of 
the experimental procedure and the selection criteria are given elsewhere (Das & 
Goswami 1983). 
 
 

3. Results and discussion 
 
The differential fluxes of each nucleus from Ne to Fe have been estimated in the 
energy interval 150 MeV/nucl to 450 MeV/nucl. The differential energy spectra of 
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Η1 (Ζ =10–15) nuclei, the most abundant nuclei with 10  Ζ  26 in cosmic rays, are
plotted in Fig. 1. The differential fluxes of these nuclei in each energy interval of 
50 MeV/nucl are given in Table 1. 

Since the first formulation of the cosmic-ray transport equation for interplanetary 
region, including the effects of diffusion, convection and energy loss (Parker 1965), it 
has been an accepted fact that the galactic cosmic rays with energies    20 GeV/nucl
propagating through the interplanetary medium lose energy due to adiabatic 
deceleration in the expanding magnetic irregularities. Fokker–Planck equation to be
satisfied by the cosmic-ray density U (r, T) is given by (Parker 1965),
 

(1) 
 
 

where U(r, T) is the differential number density of cosmic-ray particles at a radial 
distance r from the Sun in the kinetic energy range T and T+dT, V is the solar wind 
speed, Κ is the diffusion coefficient and α = (T + 2E0)/(T + E0) = (E + E0) /E with E0 
the rest mass energy and Ε = T+E0 , the total energy of cosmic-ray particles. The 
equation describing the effects of convection and scattering of cosmic-ray particles by 
magnetic scattering centres carried along by the radially moving solar wind is obtained 
with the assumption that (i) the steady-state condition prevails, (ii) the speed of solar 
 
 

Figure 1. Differential, energy spectra for H1 nuclei. 



Solar modulation of cosmic-ray nuclei
 

Table 1. Differential fluxes of H1(10   Ζ  15) nuclei.
 
 
 
 
 
 
 
 
 
 
 
 

wind is spherically symmetric, and (iii) the diffusion coefficient is isotropic. Equation (1)
can be solved numerically (Fisk 1971) or by an approximation method (Gleeson & 
Axford 1968). Gleeson & Axford (1968) showed that if the modulation is small and the 
diffusion coefficient is a separable function of heliocentric distance r and momentum 
P, then an approximate solution of Equation (1) will be 
 

(2) 
 
 

Solution (2) is generally known as the ‘force-field’ solution, where J(r,E) is the 
differential intensity of the particles of electric charge Ze at a heliocentric distance r and 
total energy E, J (R.E +φ ) is the corresponding intensity at the boundary of the
modulating volume of radius R corresponding to total energy (E + φ), E0 is the rest- 
mass energy of protons, and φ is the so-called ‘force-field’ potential energy. The 
parameter φ can be identified with the mean energy loss by cosmic-ray particles in 
penetrating the interplanetary region from the interstellar space, i.e. during their 
traversal from the boundary of modulating region into the point of observation. 

The modulated near-earth spectra derived by using the numerical and force-field
solutions differ from each other only at very low energies. For kinetic energies 
  200 MeV/nucl, the two solutions practically give the same result (Fisk 1971; Bhatia,
Paruthi & Kainth 1977). We have used the force-field solution in deriving the near-
earth modulated spectra. 

To study the effects of solar modulation, the theoretical spectrum predicted by 
Paruthi et al.,(1976) for 1964 has been taken as the demodulated spectrum, as this has 
been found to fit well with the experimental values obtained by Webber & Ormes (1967) 
and by Durgaprasad & Reames (1967) in different energy intervals ranging from 180 to 
3000 MeV/nucl. Using the force-field solution (2), the different energy spectra for 
different values of φ(150–300 MeV/nucl) are predicted. The curve corresponding 
to φ = 270 MeV/nucl is in better agreement with the experimental values. High-energy 
part of the energy spectra is seen to agree fairly well with the predicted spectra for φ 
= 270 MeV/nucl. The low-energy part indicates predominant solar modulation higher 
than expected from the force-field solution. The poor fit at low energies may perhaps be 
due to the uncertainties in the form of the unmodulated cosmic-ray spectrum outside 
the solar cavity. 

A change in cosmic-ray flux occurs during a solar cycle due to solar activity. We have 
compared our data with those of 1964 (solar minimum) as obtained by Bhatia et al. 
(1967) to find the effect of solar activity on cosmic rays. The ratio J64/J69 comes out to 
 

59



60 Ρ. Κ. Das & Τ. D. Goswami 
 
be nearly 3.8 indicating that the flux during the solar minimum (1964) is 3.8 times the 
flux during solar maximum (1969). This shows that high solar activity in some manner 
prohibits the galactic cosmic rays from entering the interplanetary space. 
 
 

Acknowledgements 
 
The authors are grateful to Professor S. Biswas (TIFR) forgiving the stack as a gift. The 
valuable comments received from Dr N. Durgaprasad (TIFR) and Dr J. Ν. Goswami 
(PRL) are also gratefully acknowledged. The financial assistance from the UGC is 
acknowledged. The facilities provided by the Department of Physics, GU is also 
acknowledged. We are grateful to Professor P. Dasgupta for going through the 
manuscript. 
 
 

References 
 
Bhatia, V. S., Chohan, V. S., Pabbi, S. D., Kainth, P. S., Biswas, S. 1967, in 10th Symp. on Cosmic 

Rays, Elementary Particle Physics and Astrophysics, Aligarh, p.33. 
Bhatia, V. S., Paruthi, S., Kainth, G. S. 1977, J. geophys. Res., 82, 2419. 
Das, P. K., Goswami, Τ. D. 1983, J. Astrophys. Astr., 4, 197. 
Durgaprasad, R, Reames, D. V. 1967, Phys. Rev., 162, 1296. 
Fisk, L. A.1971, J. geophys. Res. Lett., 76, 221. 
Gleeson,L. J., Axford, W.I.1968, Astrophys. J., 154, 1011. 
Howard, R. 1974, Solar Phys., 38, 283. 
Parker, Ε. Ν.1965, Planet: Space Sci.,13, 9. 
Paruthi, S., Bhatia, V. S., Kainth, G. S., Biswas, S., Ramadurai, S. 1976, Astrophys. Space Sci., 44,

167. 
Webber, W. R„ Ormes, J. F. 1967, J. geophys. Res., 72, 5957. 



J. Astrophys. Astr. (1985) 6, 61–70 
 
 
 
 
A Study of the Open Cluster NGC 2374 
 
G. S. D. Babu Indian Institute of Astrophysics, Bangalore 560034 
 
Received 1984 September 25; accepted 1985 January 11 
 

Abstract. The results of modified objective grating observations and photo- 
electric as well as photographic photometry of the open cluster NGC 2374 
are presented. The cluster contains at least twenty stars as definite members 
down to mv ≈ 15mag. There is a uniform extinction of E(B – V) 
= 0.175 mag and the distance is 1.2 ± 0.1 kpc. The most likely age of this 
cluster is 7.5 ×107 years. 
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1. Introduction 
 
The study of young open clusters, especially the estimation of their distances, is very 
valuable for a better understanding of galactic spiral structure. A search for such young 
clusters was carried out using the technique of combining the spectral types from the 
modified objective grating spectra and the transformed V mag from the Palomar 
Observatory Sky Survey (POSS) Charts (Babu 1983). Out of several clusters observed 
in the direction of the Monoceros constellation, it was found that NGC2374 ≡
OCI 585 ≡ C0721 –131 (l = 228°.43; b = + 01°.4) has the characteristics of a young 
cluster. It has, therefore, been selected for further photometric work. Its field is given in 
Fig. 1 along with the identification numbers.

The details of whatever little is known about this cluster are compiled by Alter, 
Balazs & Ruprecht (1970) and by Lyngå (1980). These are reproduced in Table 1. 
Ruprecht (1966) has classified the cluster as II 3p in the Trumpler classification system. 
The meaning of this classification is that it is a detached cluster with little central 
concentration of stars which is coded as II. The number 3 means that it is composed of 
both bright and faint stars, while ‘p’ indicates that it is a sparsely populated cluster with 
less than fifty stars. 

In this paper, the results of modified objective grating observations and photoelectric 
as well as photographic photometry are presented. 
 
 

2. Observations and reductions 
 
The modified objective grating spectra for the stars in the region of the cluster have 
been obtained using the instrument (Babu 1983) which gives a dispersion of
485 Å mm–1 in the second order. The exposure time was 2 hours on a Kodak 103a-O
plate, from which the spectral types, with an uncertainty of two subclasses on either side
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Figure 1. Field of open cluster NGC 2374 reproduced from the Palomar Observatory Sky 
Survey (Poss) prints. The identification numbers are introduced in the present work.
 
 
 
 
 
 
Table 1. Physical parameters of NGC 2374 known till date. 
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of the mean, could be assigned to a total of twenty-four stars around the cluster centre. 
The spectral type of star no. 20 could not be estimated because of overlapping. These 
estimates, listed in Table 2, are plotted in Fig. 2 against the V mag obtained from the 
POSS Charts, where star nos 1,2,3,4,5,6 and 24 do not fit into the general sequence of 
the other stars. Among the rest of the stars, which are considered as possible members 
of the cluster, the earliest spectral type is found to be B5 for star no. 11. However, due to 
the uncertainty inherent in the estimation of the spectral types, this could be anywhere 
between B3 and B7. Thus, since the clusters containing stars of spectral type B3 or 
earlier are young enough to be used as spiral arm tracers, NGC 2374 has been selected 
as a marginally young cluster for further studies. 

All the above-mentioned stars were then observed photoelectrically, employing the 
standard U, Β and V filters of the Johnson & Morgan system, with a dry-ice-cooled 
EMI 9558 Β photomultiplier mounted on the Kavalur 102-cm telescope. The data 
collection was done with the help of an on-line computer (TDC-12). After applying the 
necessary corrections for atmospheric extinction, the instrumental magnitudes were 
standardized with the help of photometric sequences taken from Landolt (1973). A 
minimum of three sets of observations were taken for each star and the average UBV 
values are given in Table 2. 

In order to reach the fainter members of the cluster, photographs of the cluster 
region were obtained using the following plate + filter combinations: 
 

Kodak 103a-O + Schott UG 2 for U,
 

Kodak 103a-O + Schott GG 13 for B,
 

Kodak IIa-D + Schott GG 11 for V.
 

The magnitudes of thirteen fainter stars have been established from these plates, using 
the magnitudes of the photoelectrically observed stars for calibration. These are also 
 
 

 
Figure 2. Spectral type obtained from the modified objective grating spectra are plotted against 
the V magnitudes estimated from the POSS Charts, for the stars in the field of NGC 2374. The 
filled circles denote the probable members and the crosses indicate the probable non-members. 
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Table 2. The observational data for individual stars in the open cluster NGC 2374. 

 
Spectral types are from the objective grating technique and V (POSS) are from the image diameters on 

POSS prints. V, (B – V) and (U – B) are from photometric observations –– photoelectric or photographic.
The symbol ‘m’ in the last column denotes positive membership. Doubtful membership is followed by (?) 
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included in Table 2. A majority of them appear to be around V = 15 mag with an 
uncertainty of about ± 0.2 mag in Β and V, and about ± 0.35 mag in U.
 
 

3.  Reddening
 
The (B – V) versus (U – B) diagram of this cluster is shown in Fig. 3. In this figure, 
most of the stars seem to follow an apparent sequence and show a general shift from the 
unreddened main sequence taken from Schmidt-Kaler (1965). 

According to Burki (1975), the major causes of dispersion in the colour-colour 
diagram (CCD) of a cluster are stellar evolution, stellar duplicity, stellar rotation, 
differences in chemical composition, dispersion in ages, dispersion in distances, 
presence of non-member stars and limited precision of data. In the absence of 
differential extinction (across the field of the cluster), all these various physical and 
observational phenomena put together appear to produce only a small spread in the 
CCD. In order to find the amount of this spread in the CCD of this cluster, following 
Burki (1975), the unreddened curve is shifted on to the observed sequence parallel to the 
reddening line (Hiltner & Johnson 1956) so as to determine the minimum and 
 
 
 

 

Figure 3. The (B – V) versus (U – B) diagram of the open cluster NGC 2374. The filled circles, 
crosses and triangles, respectively, denote the members, nonmembers and doubtful members 
which are observed photoelectrically. Unfilled circles and small dots indicate the photographi- 
cally observed members and non-members, respectively. The dashed line is the zero age main 
sequence (ZAMS) for unreddened stars (Schmidt-Kaler 1965), while the solid lines represent the 
ZAMS when it is fitted to the observations with maximum and minimum reddening by shifting it 
parallel to the reddening line (Hiltner & Johnson 1956). The dotted line is the unreddened curve 
for giants (FitzGerald 1970). The identification numbers of the stars discussed in the text are 
indicated. Note that the star no. 11 is shown as a nonmember and star nos 1,2, 3,4 and 14 are 
indicated as doubtful members (see text). 
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maximum colour excesses as shown in Fig. 3. The difference ∆ between Ε (Β —V)max 
and E(B–V)min is found to be
 
 
 

This value is close to the minimum natural dispersion given by Burki ( ~ 0.11 mag) and, 
therefore, indicates an almost non-variable extinction across the field of the cluster. 
Hence, assuming a uniform extinction, the following mean colour excesses have been 
adopted. 
 
 
 and 

 
 
 

Earlier, Buscombe (cf. Table 1) had given E(B – V) as 0.0 mag. 
Using the above-mentioned mean value of Ε(Β – V), the total visual absorption Aυ 

has been calculated as 
 
 

from the expression Av= R· E(B – V), where R is the ratio of total-to-selective
absorption, taken to be 3.25 ± 0.05 as suggested by Moffat & Schmidt-Kaler (1976).

A few stars, however, are found to show larger deviations than the general spread. 
For instance, star nos 5, 6, 11 and 27 indicate some excessive reddening. It is rather 
peculiar for 5 and 6 to show this type of reddening, when the objective grating 
observations indicate them to be F stars. However, the photographic measurements of 
these stars by Fenkart et al. (1972) match well with our UBV measurements. More 
detailed spectroscopic observations are needed to understand the nature and member- 
ship of these stars better. Nos 1,4 and 24 are at the red end of the curve, away from 
the rest of the stars. 
 
 

4. Membership 
 
The observed (B – V) and (U – B) colours are plotted against the corresponding V 
magnitudes in Figs 4 and 5, respectively. Both figures show fairly well-defined main 
sequences (MS) formed by a majority of the stars. The respective zero-age main 
sequence (ZAMS) taken from Schmidt-Kaler (1965) are shifted to match with them. 
The final cluster membership can now be determined oh the basis of these diagrams, 
since the extinction has been assumed to be uniform. The location of individual stars in 
the identification chart (Fig. 1) has been used as an additional criterion.

According to the criteria given by Vogt & Moffat (1972), star nos 5 and 6 are
considered as foreground stars, because they appear to be above the MS in one CMD
and below it in the other. The same is found by Fenkart et al. (1972) for these stars. Star 
nos 4 and 24, being above the MS in both the CMDs, are possible giant members of the 
cluster, especially because their brightnesses also appear to be compatible with those of 
the brightest stars on the MS. A further indication about their likely membership as 
giants is that when these two stars are dereddened by the amounts of colour excesses 
obtained for the MS stars, they get much closer to FitzGerald’s (1970) unreddened 
curve for giants, as shown in Fig. 3 by arrows. In this connection, since star no. 1 is seen 
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Figure 4. The (B – V) versus V diagram of the open cluster NGC 2374. The symbols are the
same as in Fig. 3. The solid line is the ZAMS taken from Schmidt-Kaler (1965), but is shifted to 
match with the observations. The theoretical isochrones are from Barbaro et al. (1969). The
identification numbers of the stars discussed in the text are indicated.
 
 
 
 

 
Figure 5. The (U –B) versus V diagram of the open cluster NGC 2374. The symbols are the 
same as in Fig. 3. The solid line is the ZAMS taken from Schmidt-Kaler (1965), shifted to match 
the observations. The identification numbers of stars discussed in the text are indicated. 
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closer to star nos 4 and 24 in all the diagrams, it may also be a probable giant member,
even though its location is relatively far off from the centre of the cluster (cf. Fig. 1).

Star nos 2, 3 and 14 show slight deviations from the ZAMS in Fig. 4 while no. 3 
shows it in Fig. 5 as well. However, they show similar colour excesses as those of the MS 
stars (cf. Fig.3).But,while star no. 14 is well inside the physical group of the cluster, star 
nos 2 and 3 are at the periphery. Therefore, they are considered only as doubtful 
members, and along with star nos 1, 4 and 24, are denoted by ‘m?’ in Table 2. Radial 
velocities and proper motion measurements are required to confirm their membership. 

All the stars whose magnitudes are determined by photographic photometry, except 
star nos 26,29,33 and 37 are considered to be non-members. The reason for this is that 
seven of them lie below the ZAMS in both CMDs, while the remaining two lie above the 
ZAMS in one CMD and below it in the other. Thus, they turn out to be background 
and foreground stars, respectively (cf. Vogt & Moffat 1972). 

Finally, star no. 11, being the brightest in the physical group, needs special mention. 
Fig. 2 shows it as a B5 star and its position in that diagram occurs on the extension of 
the apparent main sequence. However, its position in the CCD shows that it needs a 
much larger reddening correction ( ~ 0.60 mag) in (B – V) to bring it back into the 
vicinity of the unreddened curve. Also, its position in Fig. 4 is above the MS, while it is 
closer to the MS in Fig. 5.Its location is nearer to the periphery than to the centre of the 
cluster. Thus, all these points make it look more like a reddened, background early-
type star than a member of the cluster with some anomalous reddening. Fenkart et al. 
(1972) also have not considered this star as a member. 

This brings the total of non-members and doubtful members to eighteen, leaving the 
other twenty as probable members of the cluster. 
 
 

5. Distance 
 
The cluster main sequences,composed of the probable members in both the CMDs, are 
shifted to match with the respective ZAMS. This resulted in a mean true distance 
modulus of 10.3 ± 0.2 mag, corresponding to a distance to the cluster
 

d = 1.2 ± 0.1 kpc
 

This is in good agreement with the values of distance obtained by Collinder (1931), 
Fenkart et al. (1972) and Buscombe (Lynga 1980)—cf. Table 1.
 
 

6. Age 
 
Since no well-evolved stars are seen among the probable members,except for the three 
doubtful giants, it is not possible to locate the turn-off point on the cluster main 
sequence in the CMD of Fig. 4. Therefore, the theoretical isochrones given by Barbaro, 
Dallaporta & Fabris (1969) were superimposed on this figure so as to identify the most 
likely age of the cluster or at least the upper limit of the age. It is found that the brighter 
MS stars extend up to the isochrone of 7.1 × 107yr. That is, the age of the cluster could 
be 7.1 × 107 yr or perhaps somewhat younger. It has also been estimated from (B - V)0 
and the spectral type of the brightest star on the MS as 6×107 yr and
1 × 108 yr respectively by using the relationships given by Allen (1981) and Hoerner 
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(1957). This gives a mean value of 8 × 107 yr, which agrees fairly well with the isochrone 
age of the MS stars. Fenkart et al. (1972) estimated the age of this cluster to be 
3.5 × 108 yr from the earliest spectral type using Hoerner’s (1957) method. 

If the three giants are considered as likely members of the cluster, then their apparent
fitting to the isochrone of 5.9 × 108 yr might indicate the non-coeval nature of this 
cluster, as has been shown to be the case in several other open clusters by many previous 
workers (McNamara 1976; Piskunov 1977; Sagar & Joshi 1979). But the corresponding
non-coeval spread by the stars at the turn-off area of the giant-branch isochrone is not 
found in this diagram. 
 
 

7.  Conclusions
 
The open cluster NGC 2374 is found to contain at least twenty stars as definite 
members down to mv ~ 14 mag. Three of the six doubtful members would be red 
giants, if they were members. There is a uniform extinction of E(B — V) = 0.175 mag 
due to interstellar matter intervening between the cluster and the observer. The distance 
of this cluster is found to be 1.2 ±0.1 kpc which places it at the outer edge of the 
Orion-Cygnus arm in the direction of the Monoceros constellation. The most likely 
age of this cluster is 7.5 × 107 yr. 
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Abstract. Photoelectric radial-velocity measurements show that HD
105982 is a spectroscopic binary with a period of 3.7 years. 

 
Key words:   radial velocities—spectroscopic binaries—stars, individual

 
 
HD 105982 is near the western margin of the field covered by the Cambridge Galactic-
Pole radial-velocity survey (b > 75°): it is about 9° north-following β Leo. It is almost 
bright enough to qualify for an entry in the Bright Star Catalogue, and does in fact 
feature in the recent Supplement (Hoffleit et al. 1983). The magnitudes quoted there, 
V= 6.71 and (B–V) = 1.04, are taken from photometry obtained at Uppsala by
Häggkvist & Oja (1973). The only spectral type available is the K2 given in the Henry 
Draper Catalogue (Cannon & Pickering 1920). Unpublished photometry in the 
Copenhagen system obtained at Palomar Observatory by Dr G. A. Radford and the 
author and reduced by L. Hansen shows that the object is a giant and that it exhibits no 
hint of photometric compositeness. Rather surprisingly, the Supplement to the Bright 
Star Catalogue does not record the star’s radial velocity: two measurements taken less 
than 48 hours apart were published by Chériguene (1971) and are listed below at the
head of Table 1. 
 
 

Figure 1. The computed radial-velocity curve of HD 105982, with the measured radial
velocities plotted. Photoelectric observations are represented by filled circles; the two photo- 
graphic velocities (Chériguene 1971), which were not used in the orbital solution, are plotted as
open circles. 
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Table 1. Radial-velocity measurements of HD 105982. 
 

 

* Photographic observation by Chériguene (1971). Not used in the orbital solution. 
† Observed by Dr G. A. Radford with the Cambridge spectrometer. 
‡ Observed, in collaboration with Dr J. Ε. Gunn, with the 200inch telescope (Griffin & Gunn

1974). 
§ Observed with the Dominion Astrophysical Observatory 48-inch telescope (Fletcher et al

1982). 
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A discordance of 5 km s–1 between the first two photoelectric radial-velocity
measurements showed in 1976 that HD 105982 is a spectroscopic binary; since then it
has been watched systematically, and the 43 velocities shown in Table 1 (and made in
Cambridge by the author (Griffin 1967) except where noted) have been accumulated.
They provide the orbit which is shown in Fig. 1 and whose elements are: 
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Corrigendum 
 
Nonconservation of Baryons in Cosmology—Revisited 
 
Narlikar, J. V. 1984, J. Astrophys. Astr., 5, 67–78. 
 
The adjective ‘late’ appearing before the name of Μ. Η. L. Pryce in the last line of p. 68 
in the above paper is regretted. The author is happy to learn that Dr M. H. L. Pryce is 
alive and well and is at present Honorary Professor in the Department of Physics and 
Astronomy in the University of British Columbia, Vancouver, Canada. This note 
records the author’s apology to Professor Pryce. 



J. Astrophys. Astr. (1985) 6, 77–83
 
 
 
 
Spectroscopic Binaries near the North Galactic Pole
Paper 12:6 Boötis
 
R. F. Griffin The Observatories, Madingley Road, Cambridge, England CB30HA
 
Received 1984 October 29; accepted 1985 January 28
 

Abstract. Photoelectric radial-velocity measurements show that 6 Boötis
undergoes small periodic variations of velocity. An orbit with a 2.6-year period
and a semi-amplitude of little more than 1 km s–1 is derived. The amplitude is
smaller by a factor of two than that of any plausible orbit previously derived
from radial velocities.
 
Key words: radial velocities—spectroscopic binaries—stars, individual

 
 
It is obvious from the frequent occurrence of wide visual binaries—and still more so
from that of common-proper-motion pairs—that there must be many binary systems
whose radial-velocity amplitudes are so small as to be undetectable with presently
available instruments. The wide binaries generally have periods to be reckoned in
centuries or millenia rather than in days or years; it is, perhaps, less clear that there is a
large class of binaries having relatively short periods and very small amplitudes.
However, indications that the frequency of such systems is substantial may be seen in
analyses of the characteristics of the many spectroscopic binaries whose orbits have
been determined photo electrically in recent years (Griffin 1983b, 1985).

The actual identification of binaries whose velocity fluctuations are scarcely greater
than the measuring error is not an easy task. It is a matter of common experience in (for
example) stellar photometry, as well as in radial-velocity measurement, that the scatter
of the measured quantity is greater for some objects than for other, apparently similar,
ones. Statistical tests may be used to indicate whether the differences are significant, but
they provide no indication of what the significance may be of any variability that is
thereby established. Until much more is known about the nature, sizes and distribution
of convective cells in late-type stellar atmospheres, one cannot be sure that a statistically
verified radial-velocity ‘noise’ has any relevance to the motion of the star as a whole. The
only recourse is to make sufficiently numerous and frequent observations to determine
the periodicity (if any) of the variability. No doubt the intelligent application of Fourier
techniques would be claimed to permit the identification of periodicities with almost
arbitrarily small amplitudes; but in a more conservative approach, in which one
requires the periodicity to be discernible when the data are plotted directly against time,
the lower limit to the amplitudes admissible as real is probably about equal to the
standard deviation of an individual measurement. To approach such a limit would
necessitate a very large number of measurements; in the present paper an amplitude of
about twice the measuring error is discovered from a set of some 50 observations.

It has been remarked elsewhere (Griffin 1983a) that there are in the literature orbits
with very small amplitudes but doubtful authenticity; perhaps the most remarkable is
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Table 1. Radial-velocity measurements of 6 Boötis.
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Table 1. Continued.

 
* Lick Observatory photographic observation (Campbell & Moore 1928), not used in orbital

solution.  
† Mount Wilson Observatory photographic observation (Adams et al., 1929; Abt 1973), not

used in orbital solution.  
‡  Observed at Cambridge by Dr G. A. Radford.  
§ Observed, in collaboration with Dr J. Ε. Gunn, with the 200 inch telescope (Griffin & Gunn

1974). 
¶ Observed with the Dominion Astrophysical Observatory 48-inch telescope (Fletcher et al.,

1982).  
 
 
the orbit (Schaub 1932) with an amplitude Κ = 0.24 km s–1 for the IAU radial-velocity
standard α Ari (Pearce 1955). Dworetsky (1983) has identified the orbit given by
Aikman (1976) for φ Her, with K = 2.39 ± 0.12 km s–1, as the smallest-amplitude
reliable orbit derived solely from radial-velocity measurements.

6 Boo is the ninth-brightest of the stars which qualify, by having b > 75° and HD
types of G5 or later, for inclusion in the Cambridge radial-velocity survey of the North
Galactic Pole field. Its magnitude and colours have been determined on the UBV
system by Argue (1963), Häggkvist & Oja (1966) and Eggen (1966, 1973), with mean
results of V = 4.91, (B – V) = 1.43, (U – B) = 1.65; (R –I) has been found to be near
0.75 by Jacobsen (1970) and Hansen & Kjaergaard (1971). The MK type has been
classified as K4 III by Roman (1952), who gave the corresponding absolute magnitude
as –0.1. Other absolute-magnitude estimates are + 0.6 (Rimmer 1925) and + 0.3
(Adams et al., 1935) from spectroscopy, +0.2 (Hansen & Kjaergaard 1971) from
narrow-band photometry, and + 0.7 (Wilson 1976) from the K-line width.

Four measurements of the radial velocity of 6 Boo were made long ago at the Lick
Observatory (Campbell & Moore 1928), and two at Mount Wilson (Adams et al., 1929;
Abt 1973). They are listed at the head of Table 1 after adjustment by + 0.8 km s–1

(Griffin & Herbig 1981). 6 Boo was one of the stars observed in early tests of the
photoelectric radial-velocity method at Cambridge, and four measures made in those
tests were published then (Griffin 1967). A fifth observation was not published at the
time, as it was made on a night other than the five which featured in the paper—only
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nights on which a substantial number of observations was made were included. The
mean of the five 1966 velocities is 2.9 km s–1.

In 1973 6 Boo was reobserved in the course of the North Galactic Pole programme:
two measurements by Dr G. A. Radford with the Cambridge spectrometer and one by
Dr J. Ε. Gunn and the author at Palomar gave a mean of –1.4 km s–1 . The discrepancy
was just enough to arouse some misgivings, so the star was measured again in 1974; four
Cambridge observations by Radford in that year yielded a mean of – 3.2 km s–1

Irritated by the uncertainty as to whether or not there really were changes in the radial
velocity, the author placed 6 Boo on the Cambridge spectroscopic-binary observing
programme in 1977, and has since observed it fairly systematically. The velocity has
normally been close to – 3 km s–1 but there were distinct indications of a rise to about
– 1 km s–1 in 1978 and very definite evidence of another in 1981. At that point a
periodicity of slightly under 1000 days became apparent, and an orbital solution was
obtained; the variability of the velocity was announced, albeit in a very oblique fashion,
by Griffin & Herbig [1981 (footnote on p. 42)].  

Since the acid test of a preliminary orbit is its predictive power, it was resolved to
watch 6 Boo for another cycle and to see whether the velocity maximum predicted for
late 1983 actually occurred. In fact it did—although adverse weather and other
circumstances conspired to prevent coverage of it being as detailed as one would have
wished. There are now 56 photoelectric radial velocities available altogether, and they
are set out in Table 1. In Fig. 1 all the measurements made from 1973 onwards are
plotted directly against time; the figure is intended to convince the reader that 6 Boo
does vary in velocity and that the period of nearly 1000 days is visible immediately in the
data.  

An anonymous referee has kindly proposed that the fact of velocity variation might
be proved by the method suggested by Schlesinger (1915). Schlesinger pointed out that
a histogram representing the distribution of observations as a function of radial
velocity allows a distinction to be drawn between a spread caused mainly by orbital
motion and one arising from observational error. Radial velocities measured for a star
in a near-circular orbit are preferentially clustered around the turning points (nodes) of
the orbit and therefore form a bimodal distribution, easily distinguished from the error
distribution obtained for a non-variable object.  

Unfortunately the data in Table 1 do not pass Schlesinger’s test with much
conviction: the measuring error is so nearly comparable with the amplitude of the

 
Figure 1. Photoelectric radial velocities of 6 Boo plotted directly against time for the interval
19731984. The periodicity of nearly 1000 days is apparent.
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Velocity variation of 6 Boo that the depression in the middle of the bimodal distribution
is filled in, whereas in Schlesinger’s examples the amplitude of variation is many times the
standard error of the observations. Moreover, for an orbit of appreciable eccentricity
the height of one of the two maxima is reduced, as Schlesinger himself remarked. In the
present case the asymmetry of the maxima, coupled with the blurring caused by the
measuring errors, results in a distribution of velocities showing simply a broad and
skew single maximum. The exact shape of the distribution depends considerably upon
the width and centring chosen for the velocity ‘bins’ in the histogram. One cannot divide
50-odd observations into very many bins without the population of individual bins
becoming too small. To show a velocity histogram here would be to invite at least one of
the criticisms that (a) its fairly convincing appearance is due entirely to a skilful choice
of bins, and (b) its unconvincing appearance is due to an unskilful choice. We therefore
refrain from publishing a histogram, but hope instead to provide proof of velocity
variation by the statistical discussion below. The principles of the discussion follow
those of Bassett’s (1978) statistic T2 for distinguishing between circular and elliptical
binary orbits.

The sum of the squares of the residuals from the orbit adopted below is
18.27 (km s –1) 2. That figure is obtained by fitting 6 orbital elements to the set of 56
photoelectric radial velocities, so the number of degrees of freedom is 50. If, instead of
accepting the orbit, we make the hypothesis that there is no real change in the velocity of
6 Boo, so all of the scatter in the velocities is attributed to observational error, we obtain
a sum of squares of 49.70 (km s–1)2 about a mean velocity of –2.58 km s–1. Here we
have fitted just a single parameter (the mean), so the number of degrees of freedom is 55.
Fitting the orbit, therefore, brings about a reduction of 31.43 (km s –1)2 in the sum of
squares at a cost of the loss of an extra five degrees of freedom, i.e. it is associated with a
variance estimate of 6.29 (km s –1)2 per degree of freedom. The remaining scatter leads
to a variance estimate of 18.27/50, or 0.365, (km s –1)2 per degree of freedom. The ratio
of variance estimates is 6.29/0.365, or about 17.2, and its significance can be established
by reference to tables of the F-distribution with 5 and 50 degrees of freedom. The ratio
F = 17.2 is very significant indeed: the 1 per cent point of the F distribution is reached
at F = 3.4 and the 0.1 per cent point at 4.9. Thus the hypothesis that there is no real
change in the radial velocity of 6 Boo is very firmly rejected.

It remains, then, only to give the orbital solution, which is shown in Fig. 2 and has
elements as follows:  

 
Despite its small amplitude (a full factor of two less than the previous smallest), this

orbit seems quite secure: the amplitude is eight times its own standard deviation, and
twice the standard deviation of an individual measurement of the radial velocity. This is
about as far as the present author cares to venture in the documentation of orbits of low
amplitudes from data of the quality and quantity used here. However, it is quite
possible to go further with the aid of more accurate and/or more intensive
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Figure 2. The computed radial-velocity curve of 6 Boo, with the measured radial velocities
plotted. Photoelectric observations are represented by filled circles; photographic results, which
were not used in the solution of the orbit, appear as open triangles, vertices up for Lick
Observatory and vertices down for Mount Wilson.
 
 
observations, and cases of apparent orbital motion with Κ <  1 km s–1 are already
known although not yet ripe for publication.

The astronomical significance of an isolated case of a spectroscopic binary with a
very small amplitude is nil, since the low amplitude of any particular system may arise
through our viewing the system from very nearly the pole of the orbit; but if—as seems 
very probable—small amplitudes are commonplace, the conclusion must be that many
stars are accompanied by companions of small mass. For giant stars such as 6 Boo,
whose masses may be in the range 1–3 M , to have mass functions of the order of
10–4 M8  implies that the masses of the secondary stars are typically 0.1 M . That mass
is indicative of very late-type stars: Allen (1973) attributes it to type M8 V. In terms of
luminosity, the components of a K-giant/M8 V binary differ by a factor of a million.
Such systems, therefore, are very different from those observable directly as visual
binaries. If they prove to be numerous, then the theoretical mechanisms for the
formation of binary stars will need to include processes readily permitting the creation
of systems in which the masses of the components are very disparate.
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Abstract. We have studied in detail the energetics of Kerr–Newman black
hole by the Penrose process using charged particles. It turns out that the
presence of electromagnetic field offers very favourable conditions for energy
extraction by allowing for a region with enlarged negative energy states much
beyond r = 2M, and higher negative values for energy. However, when
uncharged particles are involved, the efficiency of the process (defined as the
gain in energy/input energy) gets reduced by the presence of charge on the
black hole in comparison with the maximum efficiency limit of 20.7 per cent
for the Kerr black hole. This fact is overwhelmingly compensated when
charged particles are involved as there exists virtually no upper bound on the 
efficiency. A specific example of over 100 per cent efficiency is given.
 
Key words: black hole energetics—Kerr-Newman black hole—Penrose
process—energy extraction

 
 

1. Introduction
 
The problem of powering active galactic nuclei, X-raybinaries and quasars is one of the
most important problems today in high energy astrophysics. Several mechanisms have
been proposed by various authors (Abramowicz, Calvani & Nobili 1983; Rees et al.,
1982; Koztowski, Jaroszynski & Abramowicz 1978; Shakura & Sunyaev 1973; for an
excellent review see Pringle 1981). Rees et al. (1982) argue that the electromagnetic
extraction of black hole’s rotational energy can be achieved by appropriately putting
charged particles in negative energy orbits. Blandford & Znajek (1977) have also
proposed an interesting mechanism by considering the electron-positron pair produc-
tion in the vicinity of a rotating black hole sitting in a strong magnetic field. It is,
therefore, important to study the energetics of a black hole in electromagnetic field.

An ingenious and novel suggestion was proposed by Penrose (1969) for the
extraction of energy from a rotating black hole. It is termed as the Penrose process and
is based on the existence of negative energy orbits in the ergosphere, the region
bounded by the horizon and the static surface (Vishveshwara 1968). Though there does
not exist an ergosphere for the Reissner-Nordstrφm black hole, there do exist negative
energy states for charged particles (Denardo & Ruffini 1973), which means that the
electromagnetic energy can also be extracted by the Penrose process.

Though Penrose (1969) did not consider astrophysical applications of the process,
Wheeler (1971) and others proposed that it could provide a viable mechanism for high
energy jets emanating from active galactic nuclei. The mechanism envisaged a star-like
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body which on grazing a supermassive black hole breaks up into fragments due to
enormous tidal forces (Mashhoon 1973; Fishbone 1973). Some fragments may have
negative energy orbits and they fall into the black hole resulting in reduction of its
rotational energy while the others come out with very high velocities to form a jet.
However, this process fell out of favour for its astrophysical applications owing to
limits on the relative velocity between the fragments (Bardeen, Press & Teukolsky 1972;
Wald 1974): No significant gain in energy results for an astrophysically reasonable orbit
of an incident star unless the splitup itself is relativistic, i.e. relative velocity between the
fragments   1/2. Very recently, Wagh, Dhurandhar & Dadhich (1985) have shown that
these limits can be removed with the introduction of an electromagnetic field around
the black hole. The electromagnetic binding energy offers an additional parameter
which is responsible for removal of the limits. Thus the Penrose process is revived as a
mechanism for high energy sources.

In this paper we wish to study the negative energy states for charged particles in the
Kerr-Newman spacetime with a view to extracting energy by the Penrose process. A
comparative analysis of negative energy states for charged particles in the
Kerr-Newman field and for a Kerr black hole in a dipole magnetic field is done by
Prasanna (1983). We study the negative energy states in a greater detail, and set up a
Penrose process for energy extraction and also examine its efficiency in this case. It is
known (Chandrasekhar 1983) that the maximum efficiency of this process is 20.7 per
cent in the case of a Kerr black hole. The presence of charge on the Kerr-Newman black
hole decreases the efficiency further when uncharged particles participate in the process
while the efficiency is enormously enhanced (as high as over 100 per cent, in fact there is
no limit!) when charged particles are involved.

Astrophysically massive bodies are not known to have significant charge on them
[Q/ (√G M )   1]. That means the charge Q on the black hole should be taken as very
small. But a small, nonzero Q can have appreciable effect on the test charge orbits due to
the Lorentzian force. It is the Coulombic binding energy that contributes significantly
to the energy of the test particle. It is not unjustified, therefore, to study the Penrose
process with this assumption.

In Section 2, we establish the equations of motion and the effective potential for
charged particles in the Kerr-Newman field while in Section 3 the negative energy
states are examined. Section 4 deals with the setting up of an energy extraction process
and finally in Section 5 we investigate the efficiency of the process.
 
 

2. The Kerr-Newman field 
 
The Kerr-Newman spacetime in the BoyerLindquist coordinates is described by the
metric  

 
Here m is the mass, a is the angular momentum per unit mass and Q is the charge on
 

<<

(2.1)

where
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the black hole. We have used the geometrised units (c = 1, G = 1). The event horizon is
given by the larger root r+ of ∆ = 0, r+ = Μ + (Μ2 – a2 – Q2)1/2

In this spacetime there exists an electromagnetic field due to the presence of charge Q.
This field is obtained from the vector potential Ai,   

(2.2)
 
That means the rotation of the black hole also gives rise to a magnetic dipole potential
in addition to the usual electrostatic potential.
 
 
 

2.1 The Equations of Motion
 
Let a test particle of rest mass µ and electric charge e move in the exterior field of the
black hole. Its motion will be governed by the gravitational field of a charged rotating
black hole as well as by the Lorentz force due to electromagnetic interaction. The
equations of motion of the particle can be derived either from the Lagrangian ℒ 
 

(2.3) 

or from the Hamiltonian H,   
(2.4) 

 
where a dot denotes derivative with respect to the affine parameter τ/µ (τ being the
proper time) and pi is 4-momentum of the particle. Since the metric and the
electromagnetic field are time independent and axially symmetric, the energy and the
φcomponent of the angular momentum will be conserved yielding two constants of
motion. Carter (1968) showed that the HamiltonJacobi equation is separable in this
system giving the constant related to the θ -motion of the particle. It is known as the
Carter constant (Misner, Thorne & Wheeler 1973, hereinafter MTW). Hence all the
four first integrals are obtained as the rest mass of the particle is also a constant of
motion which gives the remaining integral.  

From Equation (2.3) we have 
 

(2.5) 
 

(2.6)
 
 
where E and L are the energy and the φ-component of the angular momentum per unit
rest mass of the particle as measured by an observer at infinity.

The rest mass µ of the particle gives another first integral
 

(2.7)
Now, on substituting Equations (2.5) and (2.6) in (2.7) we obtain
 

 
 
 (2.8)

.
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Which gives 

 
The event horizon r+ is given by the larger root of ψ = 0. It can be easily verified 
that ψ= 0     Δ = 0.  

For convenience we introduce the dimensionless quantities

2.2 The Effective Potential
 
By the symmetry of the metric and the electromagnetic field, it follows that the particle
commencing its motion with pθ = 0 in the equatorial plane will stay in the plane for all
time, i.e. pθ = 0 all through the motion. This can also be verified by considering the
equations of motion  
 

(2.11) 
 

for the θ-coordinate. The Lorentz force term on the right gives a force directed in the
θ = π/2 plane for Ai given in Equation (2.2) and Fik = Ak,i – Ai,k. Henceforth we shall
consider motion in the equatorial plane and set ρθ = 0. As our main aim in this
investigation is to analyse negative energy states, the restriction of motion in the 
equatorial plane will not matter much.

The effective potential for radial motion could be obtained by putting pr =  pθ = 0 in 
Equation (2.9). We write  

 
The positive sign for the radical is chosen to ensure that the 4-momentum of the

particle is future directed. The quantity ω represents the angular velocity of a locally
nonrotating observer (LNRO) at a given r and   .That is, a particle with L = 0 will have
dφ /dt = ω ≠ 0.  

Equations (2.8) and (2.12) can be rewritten as
 

(2.13) 
and  

(2.14) 
 
 where  

where

and drop the bars on these symbols in further discussion.

(2.9)

(2.10)

(2.12)

⇔ 

θ 
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 (2.15) 

 
The effective potential at the horizon reads as 
 
 

 
(2.16)  

where  
 
 
 
V(r+) can become negative if – eAt <0 and (l –eAφ) < 0. It should be noted that it is
the sign of (l –eA 

 ) which is relevant for V getting negative (Dadhich 1983). The
particle rotates slower than the LNRO if l –eΑ < 0. This can be seen from the
following.  

The angular velocity Ω = dφ /dt of a particle can be obtained by using Equations
(2.5) and (2.6),  

 
which, in view of Equations (2.9) and (2.10), directly relates the sign of (l –eΑφ) to 
Ω – ω. As argued by Dadhich (1985), Ω  ω >0 defines co/counter-rotation relative to
an LNRO. It is the LNRO frame that is physically meaningful in these considerations.
 
 

3.  The negative energy states
 

In this section we shall discuss the behaviour of the effective potential in relation to the 
occurrence of negative energy states (NES).

The NES could occur due to the electromagnetic interaction (as in the
ReissnerNordstr m case) as well as due to the counter-rotating orbits (as in the Kerr
case). The Kerr-Newman solution represents the gravitational field of a charged and
rotating black hole. The rotation of a black hole also gives rise to the magnetic dipole
field in addition to the usual electrostatic field. The presence of electromagnetic field
will favour the occurrence of NES (Dhurandhar & Dadhich 1984a, b) (i) by allowing
larger negative values for energy, and (ii) by increasing the region of occurrence of
NES. It is also known to cause in certain situations the splitting of NES region into two
disjoint patches (Dhurandhar & Dadhich 1984a, b). However, in the Kerr-Newman
field it turns out that NES may occur only in one patch extending upto the horizon
(Prasanna 1983) as in the Kerr case. In the following we shall investigate NES with
reference to counterrotation and electromagnetic interaction.
 
 

3.1  The Effective Potential Curves
 
Let us first look at some typical plots of the effective potential which exhibit its
dependence on the parameters l and λ = eQ. Fig. 1 (a) shows the effective potential V for
fixed λ = – 5 and for various values of l = –100, – 50, –10, 0, 5. It depicts (i) V is
large negative for large negative l, (ii) NES region extends beyond the ergosphere
 

<

φ 

φ 
φ 
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r = 2, and (iii) as l becomes less negative, V becomes less negative but NES region
enlarges. It is interesting to see that V < 0 even for l = 0 and l = 5. This is in contrast to
the Kerr case, and is purely due to the electromagnetic interaction.

In Fig. l(b) V  is plotted for fixed l = –10 and for various values of λ = – 10, – 5,
– 2, 0, 5. It shows that larger negative λ implies larger negative V  as well as enlarged
NES region. Hereagain we have the occurrence of NES for λ = 0 and λ = 5 which is in
contrast with the ReissnerNordstr m case (Denardo & Ruffini 1973). The contri-
bution due to counter-rotation (Ω – ω) dominates over the electrostatic term. These
plots are in agreement with Prasanna’s results (1983).
 
 

3.2  The Single-Band NES Structure 
 
The V  curves in Figs 1 and 2 exhibit the singleband NES structure as also noted by
Prasanna (1983). We establish this character analytically.  

From Equations (2.13) and (2.14), V = 0 requires γ = 0 and β <0. From
Equation (2.15) γ = 0 gives

(al + eQr)2 – Δ(r2 + l2) = 0 
 
We now show that there is only one root for the above equation for r > r+ = 1 + (1 –
 
 

 
Figure 1. The effective potential V  is plotted for a = 0.8 and Q  =0.5.The vertical axis is drawn
at the horizon (r+ = 1.33). (a) l  takes the values –100, –50, –10, 0, 5; (b) λ ranges through
–10, – 5, – 2, 0, 5. The curve corresponding to a particular value of l and a particular value of λ
can be picked up from the property that V(r+) is a monotonically increasing function of l and λ.
 

(3.1)

φ 
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Figure 1. Continued.

 
a2 — Q2)1/2· Write R = r – r+ . The above equation then reads as  

 (3.2) 
where

  

To establish the result we apply Descartes’ rule of signs. As A > 0 and D < 0, 
the above equation can have more than one positive root only when Β < 0 and C > 0. We
now show that this is not possible.

Let B < 0, which implies 

 
If lλ> 0, then C< 0. However, for lλ < 0, C < 0 will require  

Squaring both sides of the above inequality and using (3.3) we deduce C < 0 for this
case too. This proves the result. Thus γ = 0 has only one root r > r+ . As r→∞, V→l, 
and hence the NES band will occur only when V < 0 at the horizon.

(3.3)
which makes



92 M. Bhat, S. Dhurandhar & N. Dadhich
 

 
The single-band nature of NES prescribes a linear relationship between l and λ,

which could be inferred from V(r) < 0. From Equation (2.16) this will imply, 
l < – λr+ /a.  

3.3 The Extent of the NES Band
 
To find the extent of the NES band we consider the quartic Equation (3.1) in various
limits as the exact solution is not easily obtainable. We take |l|  1 and |λ |   1 in V =0
for larger r. Then the quartic reduces to a cubic  
 
 
by dropping Q2 terms as Q2 

  1.  
 
Case (i): Let |λ |~ |l|, l(aλ +1)> 0. For large r, terms in r2 and r can be neglected
implying

 
Case (ii): | l–λ|    1, then Equation (3.4) reduces to

 
by neglecting r2 and the constant terms. Since, a, Q < 1 and if I2 — λ2 >  0 then

In the general case we need to resort to numerical computations. Table 1 below gives
the extent of NES. It gives the root of V = 0 for various values of / and λ for fixed
a(= 0.8) and Q (= 0.5). The horizon in this case is at r+ = 1.3317.  

It is apparent from the table that for a fixed λ < 0, the value of r= r0, say, where V
gets negative, increases as l increases until l becomes positive and dominant, then it
drops off below r +. On the other hand, for λ >  0, r0 decreases as / increases and there
obviously exists no r0 for l > 0. For fixed l < 0, it decreases as X becomes less negative
but it slightly increases for |λ| small and then steadily decreases as X increases further in
the positive range. For l > 0, only large negative values of λ give r0 > r+. The large
negative λ favours large values for r 0, as is borne out by the special’cases discussed
above.  
 
 
 
 

Table 1. Roots of V = 0 for a = 0.8, Q = 0.5 and various values of l and λ.
 

>> >>

(3.4)

>>

>>
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3.4 The Factors Causing NES
 

From Equation (2.12) it is seen that V  can be negative only when λ =  eQ < 0 (i.e. 
 eAt < 0) and /or (l – eΑφ ) < 0. Here we wish to compare the contributions of these
factors in rendering V < 0. There are the following six possible cases.

 
One can immediately see that case (3) is not possible because the conditions put on

the parameters are inconsistent in view of Equation (2.2).That is, λ< 0and l > 0 do not
permit counter-rotating orbit (Ω – ω < 0).  

The second law of the black hole physics rules out case 5. It implies (MTW),

where δm = µΕ, δJ = µml, δQ =eµ.
Clearly e>0, and l > 0 does not allow δm < 0, thus ruling out NES. That is, the

magnetic field alone cannot make V < 0.
The rest of the four cases allow for the NES. In the first case, the electrostatic energy

is responsible for the NES while in case 2 it is the electrostatic and rotation, in case 6 the
rotation and magnetic field, whereas in case 4 all the three factors join hands.

We shall consider the cases 1, 2 and 6 for Q→0 but λ = eQ finite. 
From Equation (2.16), V(r+) < 0 gives  

 
Where                            by neglecting Q2. Then  
 

(3.5)
 

In case 1, the inequality (3.5) gives 

 
which, in the extreme case a→1, implies l < |λ|. In case 2, it will always be satisfied,
while in case 6 it gives

 
which will imply for a→1, |l| > λ. 

J A A – 2
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4. The energy extraction
 
In this section we consider the process of energy extraction from the black hole. In this
process proposed by Penrose (1969), it is envisaged that a particle falling onto a black
hole splits up into two fragments at some r > r+ where V < 0. Then, if one of the
fragments has negative energy (relative to infinity), it will be absorbed by the black hole
while the other fragment will come out, by conservation of energy, with the energy
greater than the parent particle. This will result in extraction of energy from the black
hole. In the case of the Kerr-Newman black hole, the extracted energy may be provided
by the rotational and/or the electromagnetic energy (Christodoulou 1970). In the
following we shall first consider the conservation equations for the 4-momenta of the
participating particles, and then give a recipe for energy extraction. 

At the point of split, we assume that the 4-momentum is conserved, i.e., 
 

P 1= P2+P3 (4.1) 
 
where pi (i = 1, 2, 3) denotes the 4-momentum of the ith particle. The above relation
stands for the following three relations.

 
where we have set µ1 = 1. The other conservation relation follows from the
conservation of charge, 

 
The quantities µi ,li; λi, Ei ri refer to the ith particle. These relations contain in all

eleven parameters, of which 7 can be chosen freely. The choice of these parameters will
be constrained by the requirements that particle 1 should reach the point of split where
V < 0 for some suitable Ι, λ values such that particle 2 can have E2 < 0 and particle 3
has an escape orbit. To ensure uninterrupted progress of particle 1 down to the horizon,
we set l1 = 0 = λ1. The l and λ parameters for particle 2 should be so chosen that
E2 < 0. We further chose r2 = 0 which will imply E2 = V at the point of split. Such a
choice is favourable for high efficiency of the process. (For further discussion refer to
Dhurandhar & Dadhich 1984b.)  

For these calculations we assume Q           l. This assumption is realistic as can be seen
 from the following relation

 
Q (metres) = (G / ε0 cA)½ Q (Coulombs). 

 
Though Q could be small, eQ = λ can produce the Lorentz force on a particle of the
charge/mass ratio of an electron, comparable to the corresponding gravitational force.
So we neglect Q in the metric but retain λ in the equations of motion.  

We shall now adopt the scheme for calculations due to Parthasarathy et al. (1985).
From Equation (2.8) we can readily write the equations for radial motion of the particle,
 

(4.6)
 

(4.2)

(4.3)

(4.4)

(4.5)

.

<<
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where 
 
 
 
 
Since we have taken r2 = 0, which means

 
by writing Equation (4.6) for particles 1 and 3 and using Equations (4.2), (4.3), (4.5) and
(4.7) we obtain E1 as follows

 
For the parent particle to be thrown from infinity Ε 1   1, and Equation (4.8) reduces
to the inequality

 
The above inequality can be analysed in µ2 – µ3 plane. The equality sign gives the
boundary of the region for the permissible values of µ2 and µ3. For the numerical
values that we consider, this boundary is a hyperbola given by  
 
 
 

(4.10)
the relevant branch of which will be decided by the following considerations.

Squaring Equation (4.1), and using p2 · p3 < 0 (future-pointing timelike vectors) we
 

(4.11)  
 
This isaregion inside a unitcirclein the µ2 –µ3 plane.The inequality (4.9)requires µ2 to
be greater than the larger root or less than the smaller root given in Equation (4.10). It is
the smaller root (i.e. with the negative sign for the radical) that gives the nonvoid
intersection with the unit circle (4.11). However, µ2 and µ3 should be greater than zero.
Fig. 2 shows the boundary of the permissible region.

The above prescription ensures that particle 1 from infinity reaches the desired
splitting point, and particle 2 has negative energy. By Equation (4.2), particle 3 has
greater energy than the incident particle. It now remains to ensure that particle 3
escapes to infinity. This further restricts the allowed region for µ2 and µ3. For particle 3
to escape to infinity two conditions must be satisfied. The particle must bounce outside
the horizon and then it should continue its motion uninterrupted. That is, 

 
where r0 is the point of split. Numerical computations to this effect show that for
0  µ3 < 1, and for small values of µ2, the particle does not escape, while for µ2 close to
the hyperbolic boundary the particle always escapes. Therefore, for a critical value of
µ2, say µ2c’ we have the particle escaping to infinity for µ2 > µ2c. So the allowed region
 

(4.7)

(4.8)

(4.9)

.

have,
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Figure 2. Schematic diagrams for µ2 (max) and µ2 (crit) are drawn. Here the numbers involved 
are too inconvenient to permit a figure to scale. The shaded region lying between µ2 (max) and 
µ2 (crit) is the allowed region.  
 
 
 
now shrinks between µ2c and the hyperbola. This is shown in Fig. 2 by the shaded 
region.
 
 

5. Efficiency of the process
 
The most important question in the black hole energetics is the efficiency of the energy
extraction process. It is therefore very pertinent to examine how efficient the Penrose
process is. The maximum efficiency of the process in extracting rotational energy of the
black hole (Chandrasekhar 1983) turns out to be approximately 20.7 per cent. We shall
rederive this result independently following the detailed analysis done by
Parthasarathy et al. (1985) and show that the presence of charge on the black hole
reduces the efficiency of the process. However, it further turns out that there exists no
upper limit on the efficiency when one considers the process with electromagnetic
interaction. Our numerical results show that there do occur events with more than 100
per cent efficiency.  
 
 

5.1  Efficiency in the Absence of Electromagnetic Interactions
 
The maximum efficiency is obtained if we take the radial components of the velocities to
be zero, the point of split being as close as possible to the horizon (MTW). We first
derive the expression for efficiency at some r > r+ and then take the limit as r→r+. 
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Let Ui(i=1,2,3) denote the 4-velocity of the ith particle at the point of split,
 

Ω1 is the angular velocity of particle 1 with respect to the asymptotic Lorentz frame,
and we have taken E1 = l.f1 is obtained by considering unit length of the 4-velocity
vector U1.At the point of split, the light cone imposes restrictions on the angular
velocity Ω of a future moving timelike particle that Ω– < Ω < Ω+ where  
 

 (5.4) 
 

The best result will be obtained by choosing the angular velocity of the second
particle to be Ω2→Ω– and that of the third to be Ω3→ Ω+  In the limit,

 
The conservation of 4-momentum can be rewritten as  

 
By algebraically manipulating the above equations we obtain
 

 (5.8) 
 

The efficiency η is defined as 
 

 
 
 
 
 (5.9) 

 
Now we take the limit as split point tends to r+. Then  
 

For the extreme Kerr-Newman black hole (a2 +Q2 = 1), the relevant gij at the horizon
are given as
 
 
 

(5.11) 
 

Putting in these values in Equation (5.10) we obtain
 

(5.12)
 

(5.1)

(5.2)

(5.3)

(5.5)

(5.6)

(5.7)

(5.10)

where
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which will imply 

 (5.13)  
For Q = 0  

 
which is in agreement with the known result. Thus the presence of charge on the black
hole decreases the maximum efficiency of the Penrose process in the absence of
electromagnetic interaction (participating particles being uncharged). 
 
 

5.2  Efficiency in the Presence of Electromagnetic Interactions
 
When we consider the participating particles being charged, the t-component of the

 
Here, the charges on particles can be chosen arbitrarily large and hence this will not give
any upper limit on the efficiency (Parthasarathy et al., 1985). In fact the term
eAt = — eQ/r can assume arbitrarily large values for large e. This is borne out by the
numerical example considered below.  

Let us assume a = 0.8, Q = 0.5. The particle 1 comes from infinity, and has
parameters µ1 =1, Ε1 = 1, l1 = 0, e1 = 0. The split is taken to occur at r = 4.0. For
l2 = – 10 and e2 = –50 we give in Table 2 the maximum efficiency for various values
of µ3. For η (max), µ2 = µ

2 (max) given by the hyperbolic boundary, and µ2c defines the 
lower boundary of the permissible region (see Fig. 2). The first row of the table gives an
instance when efficiency is 104 per cent.  
 
 

6. Conclusion
 
The presence of electromagnetic fields around a black hole (inherent in the metric as in
the present case, or externally superposed) influences the behaviour of negative energy
states for charged particles in the following two ways (Dhurandhar & Dadhich 1984a, b).

(a) The NES region is enlarged beyond the ergosphere r = 2M.  
(b) Ε can have larger negative values.  

 
Table 2. The maximum efficiency of the Penrose
process for various values of µ3, when electromag-
netic interactions are included.

 

conservation Equation (5.7) will read as 

(5.14)
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Both these factors contribute positively to the energy extraction process. The former
brings in NES at comfortable r-values, thereby increasing the probability of larger
number of events yielding energy extraction, while the latter tends to increase the
energy gain per event resulting in greater efficiency. For the Kerr-Newman black hole,
large negative charge on the test particle (i.e. large λ< 0) causes (a), while both λ and l
large and negative give rise to (b) (see Fig. 1).

It has been shown that the extraction of energy from the Kerr-Newman black hole is
more efficient—in fact, there exists no upper bound on the efficiency when charged
particles participate in the process (Table 2 shows an event of over 100 per cent
efficiency)—in contrast to when uncharged particles are involved. In the latter case, the
charge on the black hole reduces the maximum efficiency which is 20.7 per cent for the
Kerr black hole. The electromagnetic extraction of black hole’s energy is highly
efficient.  

As massive bodies cannot have significant charge on them, in our efficiency
calculations we have taken Q/M    1. We have hence neglected it in the metric but have
retained its interaction with the test particle in the equations of motion. If a black hole
acquires slight charge, our results would apply and will be indicative of the general
behaviour of NES and energy extraction process.
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Abstract. The absolute magnitude Mv of the hydrogen deficient binary
υ Sgr has been estimated as –4.8 ± 1.0 from the distribution of the
interstellar reddening, polarization and interstellar lines of the surrounding
stars. From the ANS observations obtained at the time of the secondary
eclipse, it appears that the hotter secondary is surrounded by a disc with
colours of a B8–B9 star. The λ 1550 CIv absorption line arising in the stellar
wind does not show any change in strength during the secondary minimum.
The upper limit to the mass-loss rate from the high temperature wind is
estimated as  5 × 10–7

 M  yr–1 from the 2 cm and 6 cm radio
observations.  
 
Key words: stars, chemically peculiar—stars, individual—stars, eclipsing—
ultraviolet astronomy—mass loss

 
 

1. Introduction
 
Upsilon Sagittarii is the brightest of the small group of hydrogen deficient binaries, the
other known members being KS Per (HD 30353) and possibly LSS 4300 (Drilling
1980). All. of them are single-lined spectroscopic binaries consisting of A-type
supergiant primaries with optically unseen companions; υ Sgr is probably an eclipsing
binary as well (Gaposchkin 1945; Eggen, Krön & Greenstein 1950). The presence of Hα
and other emission lines and the infrared excesses with 10 µm emission feature are
indicative of extensive mass loss and the presence of circumstellar dust. The
observational properties have been summarized by various investigators (Greenstein
1950; Hack, Flora & Santin 1980; Schönberner & Drilling 1983). Further, to explain the
Hα absorption components to the emission, Nariai (1967) has presented a model in
which the system is surrounded by an expanding tail of gas and dust in which emission
and infrared excess occur. Although the presence of a secondary can be inferred from
the recent ultraviolet studies (Duvignau, Friedjung &Hack 1979; Hack, Flora & Santin
1980; Hellings et al., 1981; Drilling & Schönberner 1982), the nature of the secondary
is not very clear. Hack, Flora & Santin (1980) infer a spectral type of O9 V for the
companion from a comparison of IUE spectra of υ Sgr with S2/68 satellite energy
distributions of α Cyg and ζ Oph; on the other hand, Drilling & Schönberner (1982)
 

† Based on observations obtained with the Astronomical Netherlands Satellite and VLA. The National
Radio Astronomy Observatory's Very Large Array at Socorro, New Mexico is operated by Associated
Universities Inc. under contract with the National Science Foundation.
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find from the low resolution IUE spectra that the line and continuum can be matched
by a companion of type B3 Ib which is about 3–5 mag fainter at V relative to the
primary (~ A2 Ia). Furthermore, in order to account for the extreme hydrogen
deficiency and high nitrogen abundance Schönberner & Drilling (1983) propose that
the primary is a helium star of about 1M� which has undergone extensive mass loss
thereby stripping the outer layers, and the secondary has accreted part of the mass and
is thus over luminous for its mass (  4 M ) . It was pointed out by Hellings et al. (1981)
and Hack, Flora & Santin (1980) that the strong spectral features seen in the IUE low
resolution spectrum of CIv, Nv, SiIv, Sim etc., occur in the stellar wind and thus might
not really represent the spectral characteristics of the secondary. Although both υ Sgr
and KS Per have similar characteristics, their Mvs seem to be different. The Mv of KS
Per has been determined by Danziger, Wallerstein & Böhm-Vitense (1967) as – 3.2 ±.7
corresponding to an A2 II star, whereas υ Sgr is usually assumed to be – 7 mostly based
on the luminosity classification of Ia. As pointed out by Danziger, Wallerstein& Böhm-
Vitense (1967), when the lines are greatly enhanced on account of the low opacity, the
approximate spectral type cannot be used to infer the effective temperature or absolute
magnitude with high accuracy. A further complication arises regarding the secondary if
the primary is assumed to have Mv of –7. Kippenhahn & Meyer-Hofmeister (1977)
have computed the radii and the location in H–R diagram of mass-accreting main-
sequence stars for various accretion rates. Since the present mass of the secondary is
expected to be   4 M�, and not much different from its original mass (according to
Schönberner & Drilling 1983), if we assume the primary has Mv = –7, then the
secondary occupies a very improbable position in the H–R diagram (B3, Mv ~ – 4)
indicating very high mass accretion rates. Greenstein (1940) earlier estimated Mv as
– 7.6 from kinematics. Because of the large uncertainty in distance estimates based on
kinematics, a re-examination of Mv of the primary is warranted.

In this paper we rediscuss the determination of the distance and absolute magnitude
of υ Sgr in a similar way as was done for KS Per by Danziger, Wallerstein & Böhm-
Vitense with the help of Astronomical Netherlands Satellite (ANS) observations. We
further discuss the ANS observations—which include observation at the time of the
secondary eclipse—with a view of obtaining some constraints regarding the nature of
the companion. In addition, we present optical observations in the Hα region. Finally,
we present the observations at 2 and 6 cm done with Very Large Array (VLA) and
estimate upper limits for the rate of mass loss from the system.
 
 

2.  ANS observations
 
A total of eleven photoelectric observations of υ Sgr have been obtained by ANS
(kindly supplied by Dr D. P. Gilra) at 1550Å (square-response full-width 150 Å and
50 Å), 1800 Å (150 Å), 2200 Å (200 Α ) 2500 Å (150 Å), and 3300 Å (100 Å). The
entrance aperture had dimensions equivalent to 2.5 × 2.5 arcmin and pointing accuracy
was 20 arcsec. The internal accuracy of photoelectric system is supposed to be good to
0.5 to 1 percent. The details of satellite, and method of observations and reductions
are given in Wesselius et al. (1982). The observations of υ Sgr have been obtained over a
period of one year. The individual observations are given in Table 1, with the date of
observation, the phase and the magnitude in each wavelength band. The zero
magnitude corresponds to 3.64 × 10–9 erg cm– 2s –1A–1. The phase is calculated from
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Table 1. ANS observations of υ Sgr.

 
* 0.0 mag corresponds to 3.64 × 10-9 erg cm–2 s–1 Å–1

 
 
the ephemeris given by Hack, Flora & Santin (1980) and corresponds to photometric
phase.  
 
 

2.1  Reddening, Absolute Magnitude and Distance
 
We estimate the distance and Mv of υ Sgr based on the distribution of E (B–V),
polarization and interstellar lines with distance. The reddening E(B – V) has been
variously estimated ranging from 0.1 to 0.3. Using low-resolution IUE observations,
Drilling & Schönberner (1982) estimated the reddening E(B–V) as 0.1 by ironing
out the 2200 Å depression using Seaton's (1979) interstellar reddening curve. They
matched the energy distribution of the star with a combination of F0 Ib and a visually
5.2 mag fainter B3 Ib star (θ Ara). Later, by fitting the energy distribution longward of
2000 Å with a helium star model of Teff= 10500 K, Drilling et al. (1984) obtained
E(B – V) as 0.12. Earlier, Dyck & Milkey (1972), and Duvignau, Friedjung & Hack
(1979), the latter using Copernicus observations, estimated E(B – V) as 0.20.  

The ANS observations in Table 1 have been corrected for interstellar reddening
using the reddening relations given by Wesselius et al. (1980). As can be seen from Fig. 1
these observations normalized to 3300 Å band are not compatible with E (B – V)
= 0.12. The 2200 Å observation still shows a dip and also the energy distribution does
not match the combination of F0 Ib (α Lep or α Car) and a B3 Ib star (θ Ara) which is
fainter by 5.2 mag in V. A wide variety of combinations of energy distributions of an A
supergiant and a Β star can match the ANS observations to roughly equal degree of
agreement(or disagreement) although none of the combinations could fit exactly. Fig. 1
also illustrates a combination of an A2 Ia and a B3 Ib star which is fainter by 4.7 mag in
V, and an A 2Ib star and a B8 V star which is fainter by 3 mag in V, etc. However,
E (B – V) of 0.17 to 0.20 seem to be required to explain the 2200 Å observation, and to
match with various combinations of ANS energy distributions. We will discuss this aspect
further in Section 3. The value of E(B – V) of 0.3 is quite incompatible with these
observations. Bohlin & Holm (1984) give correction factors for bringing the ANS fluxes
to the IUE flux scale. According to these authors, the IUE fluxes agree with ANS to
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Figure 1. ANS observations of υ Sgr corrected for different values of interstellar reddening.
Triangles, open circles and crosses corresponds to E(B – V) = 0.20,0.175 and 0.12 respectively.
These observations are fitted to various combinations of standard star energy distributions in a,
b, and c. The notation is as follows: (a) Full line: A5 Ib + 5.25 mag visually fainter B2 V; dashed
line: A2 Ia+ 6.2 mag visually fainter O9 V (10 Lac + α Cyg); dot dashed line: A2 Ia + 4.7 mag
visually fainter B3 Ib (θ Ara). (b) Full line: A2 Ib + 6.0 mag visually fainter B3 V. (c) Full line:
A2 Ia + 3.0 mag visually fainter B8 Ia; dashed line: A2 Ib + 3.0 mag visually fainter B9 V; dot
dashed line: A2 Ib + 3.3 mag visually fainter B9 V.
 
 
within 2.5 per cent after applying the correction factors. We converted ANS fluxes to
the IUE scale and tried to estimate the reddening by ironing out the 2200 Å depression
using Seaton's (1979) reddening curve, which again indicates that the reddening might
be around E(B – V) = 0.16 to 0.20. However, because of the crowding of spectral lines,
the lower resolution of ANS observations relative to IUE might give a slightly higher
value of E(B – V). Since the reddenings estimated by Drilling et al. (1984) using a
helium star atmosphere and a normal composition atmosphere (Drilling &
Schönbemer 1982) do not differ very much, we assume that the uncertainty in the
reddening estimate, stemming from hydrogen deficiency is not appreciable. We
conclude that E(B – V) value of υ Sgr is between 0.12 and 0.20.

To arrive at the distribution of E(B – V) with distance modulus in the direction of
υ Sgr, we have used the Β stars (mostly earlier than B5) in the field of less than 6 degrees
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(most of them within 3 degrees) around the galactic longitude and latitude of υ Sgr. The
UBV photometry and spectral types, whenever available, have been gathered from
various sources and are given in Table 2. Whenever the MK spectral types are not
available, the Q method and the relation given by Dworetsky, Whitelock & Carnochan
(1982) has been used to derive them from the colours. The intrinsic colours and absolute
magnitudes for the spectral type have been taken from FitzGerald (1970) and Lesh
(1968, 1979) respectively. Fig. 2 shows the correlation of E (B–V) with Vo – Mv (the
line shown in the figure is a mean line drawn by visual inspection) and shows that the
reddening increases smoothly with distance modulus—at least until E(B – V) ~ 0.3—
and can be used to estimate Mv. The reddening value of E (B – V) = 0.12 to 0.20 leads to
Vo – Mv = 8.1 to 10.2. For υ Sgr with V = 4.61, using R [ ≡ Av /E(B – V)] = 3.2 leads
to Mv of –3.9 to – 6.2.  

The observations of polarization and interstellar lines of the stars near υ Sgr taken
from literature are given in Table 3. The polarization of υ Sgr appears to be variable
(Coyne & Gehrels 1967; Coyne 1977), however, most of the contribution seems to come
from the interstellar medium. The λ max of polarization and the position angle are close
to that determined for κ Aql κ Aql has the same galactic latitude as υ Sgr but is 10
degrees away in longitude, and both υ Sgr and κ Aql have the interstellar components
of CaII Κ (and Η) line with the same velocity and roughly equal intensity (Adams 1949,
1943). κ Aql has slightly higher percentage of polarization and also a higher value of
E(B – V) (0.28). Thus it appears that υ Sgr is at the same distance as κ Aql, or slightly
closer. Assuming the same distance modulus as for κ Aql (Savage & Jenkins 1972) one
obtains Mv = –4.8 for υ Sgr. The previous estimates of Μυ of –7 by
McLaughlin (1939) was based on the strengths of the interstellar lines. However,
Adams (1943, 1949) has resolved the interstellar CaII lines and both components have
roughly the same intensity as in κ Aql. Moreover, the line strength of Na I lines have been

 
Figure 2 Plot of E(B – V) versus reddening-corrected distance moduls V0 – Mv for stars
around v Sgr. The arrows on the ordinate denote the two values of E(B – V) for υ Sgr.
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given by Duvignau, Friedjung & Hack (1979) who also plot the relation of Na I D 1 line
equivalent width against the hydrogen column density. This relation yields NH ~ 5
× 1020 cm –2 for an equivalent width of 0.186 Å; however, there is a large amount of
scatter in the relation. Using the relation ΝΗ /Ε (B –  V) = 5.3 × 1021 leads to E  (B – V)
~ 0.1 which is compatible with the E(B — V) estimate given earlier. Further, Hack,
Flora & Santin (1980) show that the equivalent widths of other interstellar lines in β Lyr
and υ Sgr have about the same value. The distance to β Lyr is only 350 pc (Plavec,
Weiland & Dobias 1982). Thus we conclude that Mv of υ Sgr is –4.8 ± 0.8 and roughly
the same as that estimated for KS Per of – 3.2 ± 0.7 (Danziger, Wallerstein & Böhm-
Vitense 1967).  
 
 

2.2  The ANS Photometry and the Depth of Secondary Eclipse
 
The observations are few and do not cover the complete period. We propose to see how
consistent these observations are with the models proposed earlier based on the depth
of the secondary eclipse in the ultraviolet (UV). These observations have been phased
with the ephemeris of Hack, Flora & Santin (1980). They occur at phases 0.99, 0.98, 0.69,
0.34 and 0.33. These have been plotted in Fig. 3 after normalizing to the averaged flux at
phase 0.69 for all the five ANS bands, along with the light curve in the blue region
obtained by Eggen, Kron & Greenstein (1949). The coincidence of the minimum of
1947 observations with 1975 ANS observations shows that the period is fairly accurate.
The optical observations show that the eclipse is asymmetrical and has a depth of
0.1 mag. As can be seen from the figure and as is anticipated, the depth in UV is higher.
Since the ANS observations do not cover the total eclipse to define the shape, we assume
the duration of the eclipse to be the same as in blue light in order to extrapolate the
eclipse curve from phase 0.99 to phase 0.0 and estimate the depth of the eclipse at phase
0.0. This has been done in two ways with practically the same result for the minimum
depth. It is likely that the light is not constant even outside the minima (Cousins 1963).
There may even be short-period variations. The ANS observations show that the flux

 
Figure 3. Light curve of υ Sgr, Open circles are the observations of Eggen, Kron & Greenstein
(1949) in the blue; the dots are 2200 Å ANS observations.
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observed at 0.692 phase differs from that at phase 0.689, particularly at the shorter
wavelengths. The depth of the secondary minimum in terms of the light outside eclipse
represented by the mean of the fluxes at phase 0.692 and 0.689, and the flux at phase
0.692 separately, are given in Table 4. The eclipse seems to be partial. As can be seen
from Table 4, the depth of the eclipse between 2500 Å to 1550 Å is the same or perhaps
slightly less at shorter wavelength (i.e. 1800 Å and 1550Å). This behaviour is similar to
that reported by Duvignau, Friedjung & Hack (1979). With the assumption that
the secondary eclipse is an occultation, the differential depth can give an indication of
the luminosity of the secondary. Within the uncertainty of the exact shape of the
minimum, the α∝ is estimated to be 0.96 ± 0.03 for the assumed limb-darkening
coefficient of 0.5 (Irwin 1960).Further, assuming α∝ is the same in all the wavelengths,
the luminosity of the secondary [i.e.(1 – l)∝= α∝ L s] is estimated. Taking the value of
E(B – V) ~ 0.2 and the mean fluxes of phase 0.689 and 0.692 as representing the total
light outside the eclipse, the magnitudes in the ANS bands inferred for the secondary
are quoted in Table 4. The colours thus determined for the secondary do not
correspond to any single spectral type (Wesselius et al. 1980,1982),but vary between B8
to A3 (as the wavelength decreases). This behaviour is similar to that described by
Duvignau, Friedjung & Hack (1979) from the energy distribution of S2/68 observa-
 

Table 4. The depth of the secondary minimum, and the estimated magnitude of the
secondary.  

 
* Assuming that the average flux at phase 0.692 and 0.688 represents the light outside the eclipse.
† Assuming that the average flux at phase 0.692 represents the light outside the eclipse. 
 

tions. The UV colours obtained from the secondary eclipse depth certainly do not
indicate a spectral type of B3 Ib.  

The inclination of the orbit can be estimated as between 66° to 84.7° depending on
the shape of the eclipse. From this, the mass function of 1.677 Μ8 (Hack, Flora &
Santin 1980) leads to m3 / (m 1 + m2)2 = 2.2 and 1.7 respectively. Further, assuming the
mass ratio m p / ms to be around 0.3 as proposed by Plavec (1973) and Schönberner &
Drilling (1983), one has mp ~ 1 Μ8 and ms about 3 Μ8. This leads to a spectral type of
B 9 , if the secondary obeys the mass- luminosity relation of the main sequence.
The estimate of K, the ratio of radii (rs / rp) is quite uncertain—it could even be as
large as 0.9. Adopting Μυ = – 4.8 and Teff of 10500 Κ the latter leads to Rp ~ 29.7 R ,
log L / L8  = 4.01.  
 

3.  Spectra in the Hα region
 

Spectra in the red region were obtained monitoring the Hα profile. A spectrogram
obtained in September 1976 with the 1 m telescope at Kavalur at 17 Å mm–1 dispersion
at phase 0.28, shows an emission feature at 6583.6 Å probably due to [N II], in addition
to the Hα and Fe II lines. The profile of Hα appears to be very similar to that quoted by
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Greenstein & Merrill (1946). The 6584 Å feature seems to have the same radial velocity
as the other emission lines. The other line of [NII], at 6548 Å, could not be detected with
certainty. The presence of [NII] lines indicates circumstellar material of low density.
Danziger, Wallerstein & Böhm-Vitense (1967) have also detected [ΝII] 6584 Å in KS
Per.  
 
 

4. VLA observations
 
The resonance lines due to high temperature gas indicate a considerable mass loss
(Hack, Flora & Santin 1980). This is to be expected from stellar evolution as the
primary must either have lost or is still losing mass at a high rate. To derive the mass-
loss rate from the free-free continuum of the circumstellar material, we observed υ Sgr
at 2 and 6 cm with the Very Large Array (VLA) on 1983 December 12. No emission was
detected, the upper limits (3 σ) to the flux density being 0.9 mJy at 2 cm and 0.3 mJy at
6 cm, and hence only an upper limit of M can be derived. Following Wright & Barlow
(1975), the mass loss rate M of a star with a flux density Sv at frequency v. can be
expressed as  

 
where S v is in Jy, ν is in Hz and D the distance is in kpc and V∝ is the wind terminal
velocity in km s–1. µ, z and γ are the mean molecular weight per ion, the rms ionic
charge and the mean number of electrons per ion respectively, g is the Gaunt factor at
radio frequency obtained from the formula of Spitzer (1962). Taking the abundance
ratio H/He as 0.1, and temperature of 105 Κ for the wind as indicated by the lines of CIv,
Nv, Si Iv, we adopt µ = 4.1, γ = 2.0, z = 2.0 and g(6 cm) = 7.2. Adopting the distance
0.6 kpc as obtained earlier and V∞ = 700 km s–1, as inferred from the CIv, Si Iv lines,
from IUE spectra (Hack, Flora & Santin 1980), we obtain an upper limit to the mass-
loss rate of about 5.4 × 10–7 M yr–1. This rate is far too low to account for the
evolutionary state of the system. Hence we conclude that the mass loss rate was
probably much higher in the past, as the primary was estimated to have lost 5 to 12 M  
in its earlier evolution (Schönberner & Drilling 1983).
 
 

5. Discussion 
 
The depth of the secondary eclipse in the UV and the energy distribution indicate a
spectral type later than B3 Ib for the secondary, contrary to that proposed by Drilling &
Schönberner (1982), whose classification is based on the strength of tue UV resonance
lines. Several explanations for this discrepancy are conceivable.

First we discuss the-possibility that the UV secondary minimum is filled in by
additional light which becomes observable, at least partially, during the eclipse. This
additional source may arise from circumbinary gas clouds with multi-component
emission lines in the UV, or it might arise from a disc (or a hot spot) around the Β star.
The IUE spectra Obtained by Hack, Flora &Santin(1980) and Drilling & Schönberner
(1982) show that there are no strong emission lines present in the UV spectrum, which
fact points to a disc. With the mass ratio mp/ms =  0.3 (see Section 3) the radii of the
 

.
.
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Roche lobes around the primary and secondary are about 38 R  and 70 R ,
respectively. Within the uncertainties of Mv, the primary just about fills its Roche lobe,
and hence mass transfer seems to occur. Blue-shifted absorption components of
– 300 km s 

–1 around the time of the primary minimum seen occasionally (Bidelman
1949; Nariai 1967)also indicate mass transfer. The presence of absorption components
at 0.5 phase (Hα ,Al III) has been interpreted (Hack, Flora & Santin 1980) as due to a jet
or stream of material from the secondary to the primary. The variability of the spectral
features as evidenced from the changes in the profile of Hα (Greenstein & Adams 1947)
show similar behaviour to that seen in Algol type systems like U Cep.

Then we have to discuss whether the classification B3 Ib based on UV resonance lines
really pertains to the photosphere of the secondary. These lines, through their P-Cygni
profiles, manifest that they are formed mostly in the wind material . However, the only
true photospheric line may be 1183.7 Å of NIII(20), seen in the Copernicus spectrum. It
indicates a spectral type of B3 or earlier (Duvignau, Friedjung & Hack 1979);however,
this identification is regarded as uncertain. Hence the spectral classification of the
secondary remains open. The compromise is a B3. star surrounded by a disc whose
colour temperature corresponds to a B8–B9 star, which may come close to a realistic
model.  
 
 

6. Conclusion
 
The absolute magnitude of the primary seems to be close to Mv of –4.8 ± 1.0 which is
similar to the value derived for KS Per of 3.7 ± 0.7 by Danziger, Wallerstein & Böhm-
Vitense (1967). From the ANS observations of depth of the secondary eclipse, it appears
that the hotter secondary is surrounded by a disc which makes the colours of the
secondary similar to a B8–B9 star. The strength of the stellar (or systemic) wind lines of 
C Iv 1550 Å do not change even during the secondary eclipse indicating that the wind is
not affected by the orbital motion. The appearance of [Ν II] 6583 Å indicates a low
density envelope. Finally, from radio observations an upper limit to the mass loss rate is
estimated as 5 × 10 –7 M yr–1. To understand the system fully a complete phase
coverage is needed in the UV as well as in the optical.
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Abstract. Nucleosynthetic yields and production rates of helium and heavy 
elements are derived using new initial mass functions which take into account 
the recent revisions in Ο star counts and the stellar models of Maeder 
(1981a, b) which incorporate the effects of massloss on evolution. The current 
production rates are significantly higher than the earlier results due to Chiosi 
& Caimmi (1979) and Chiosi (1979), and a near-uniform birthrate operating 
over the history of the galactic disc explains the currently observed 
abundances. However, the yields are incompatibly high, and to obtain 
agreement it is necessary to assume that stars above a certain mass do not 
explode but proceed to total collapse. Further confirmation of this idea comes 
from the consideration of the specific yields and production rates of oxygen, 
carbon and iron and the constraints imposed by the observational enrichment 
history in the disc as discussed by Twarog & Wheeler (1982). Substantial 
amounts of  4He and 12C, amongst the primary synthesis species, are 
contributed by the intermediate mass stars in their wind phases. If substantial 
numbers of them exploded as Type I SN, their contribution to the yields of 
12C and 56Fe would be far in excess of the requirements of galactic 
nucleosynthesis. Either efficient massloss precludes such catastrophic ends 
for these stars, or the current stellar models are sufficiently in error to leave 
room for substantial revisions in the specific yields. The proposed upward 
revision of the 12C (α ,γ)16O rate may produce the necessary changes in stellar 
yields to provide a solution to this problem. Stars that produce most of the 
metals in the Galaxy are the same ones that contribute most to the observed 
supernova rate.  

 
Key words: stars, nucleosynthesis — stars, birthrate—stars, intermediate
mass — Supernovae, Type I  

 
 

1. Introduction 
 
Our understanding of the chemical enrichment of the interstellar medium is critically 
dependent upon our knowledge of the processes of nucleosynthesis, mass ejection and 
final evolution of stars. Recent evolutionary computations of massive as well as low and 
intermediate mass stars include the effects of massloss via stellar winds and contain the 
details of nucleosynthetic yields as a function of the initial stellar mass. Along with the 
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theoretical developments, new and vastly improved observational data have become 
available, and a meaningful comparison of theoretical results with what is actually 
observed is now possible. Such comparisons are crucial in limiting theoretical 
possibilities, and they provide important constraints for the models of chemical 
evolution of galaxies.  

In an earlier paper (Mallik 1981), we had investigated the rate of element production 
in the solar neighbourhood using the stellar nucleosynthesis data from Arnett (1978, 
hereinafter A78) and the birthrate function determined by Lequeux (1979). The 
essential new feature of Lequeux’s birthrate function was a correction applied to the Ο 
star counts based on the belief that a significant fraction of them belonged to an older, 
evolved population. When the observed surface densities were corrected for the 
presence of this population, the numbers dropped considerably for masses above 
24 M

☼
 8. The derived birthrate function was fairly steep (with a slope of – 2.1, compared 

to the Salpeter function with its slope of – 1.35). As a result, the current element 
production rate turned out to be rather low. If the observed abundances in the disc were 
assumed to be a result of nucleosynthesis in massive stars, the past star formation rate 
had to be much higher. The inferred high star formation rate in the past would violate 
the continuity constraint on the initial mass function (Tinsley 1977a; Miller & Scalo 
1979, hereinafter MS).  

It is now fairly certain that Lequeux had overcorrected for the OB ‘runaway’ stars 
and, if at all, one should use the surface densities obtained by him with the ‘runaways’. 
Moreover, Lequeux possibly underestimated the effects of interstellar extinction and 
arrived at rather low surface densities (see Garmany, Conti & Chiosi 1982). For both 
these reasons the birthrate function determined by Lequeux is deemed unreliable. 
There have been important revisions to the IMF for the massive stars, correcting for the 
earlier incompleteness of the data, and using better evolutionary models that take into 
account the effects of massloss. They imply a higher birthrate for the massive stars and 
therefore, a higher current rate of nucleosynthesis, and hence a slower variation of the 
stellar birthrate during the lifetime of the galactic disc. From an observational study of 
the ages and metallicity distribution of F and G dwarfs, Twarog (1980) concluded that 
the stellar birthrate had been more or less uniform.

A related problem in the chemical evolution of galaxies is the ratio of helium to heavy 
element enrichment. From a theoretical point of view, a linear correlation is expected. 
Peimbert (1977), Lequeux et al. (1979) and Rayo, Peimbert & Torres-Peimbert (1982) 
find a steep linear correlation with ∆Y / ∆Ζ ~ 2.0–3.0. Shaver et al. (1983) conclude, 
from a study of radio recombination lines in galactic Η II regions that ∆Y / ∆Ζ is close 
to 0.8, a value much smaller than those quoted by Peimbert and coworkers. The steep 
slope of helium to heavy-element enrichment, if confirmed, would pose a serious 
theoretical problem, since no combination of any reasonable IMF and the available 
stellar nucleosynthesis data is able to produce this slope (Hacyan et al. 1976; Gingold 
1977; Mallik 1980). Chiosi and coworkers (Chiosi & Caimmi 1979; Chiosi 1979) argued 
that if massloss from massive stars were taken into account in the evolutionary models, 
the mass of the helium core Mα, for a given initial mass Mof the star, would be greatly
reduced and subsequent evolution of the core would, then, generate heavier elements in 
much smaller quantities. Using A 78 but a modified M (Μα) relation, they computed a 
much higher ∆Y / ∆Ζ. They further noted that this was a lower limit since the loss of He- 
rich material by stellar wind, during the core H- and He-burning phases, was not taken 
into account. However, the reduced ability of massive stars to produce heavy elements 
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was reflected in a derived low rate of nucleosynthesis. The past star formation rate was 
inferred to be higher by a factor of 25-30. 

New evolutionary models have since been computed by Maeder (1981a, b) who
includes the effects of massloss and follows the evolution beyond He-burning to core 
carbon ignition. Maeder has studied the Μ (Mα) relation implied by his models and 
finds that it is more in agreement with the one used in A78. Maeder (1981b) computed 
the stellar yields of helium and heavy elements as a function of the stellar mass from his 
models and used the same to calculate nucleosynthetic yields from a generation of stars. 
Using MS and the new stellar data, he found that a maximum variation of a factor of 3 
in the SFR over the history of the disc is sufficient to explain the observed abundances. 
This result is in near perfect agreement with the earlier estimate by Wheeler, Miller & 
Scalo (1980, hereinafter WMS). Maeder (1981b) obtained a ΔY / ΔZ ~ 0.75 which is 
similar to the previous estimates, when no massloss was taken into account, and 
concluded that massloss in massive stars does not alter this ratio significantly. None of 
these authors took into account the contribution of the intermediate mass stars 
although these stars are known to produce significant amounts of He and CN elements 
(Renzini & Voli 1981), and may also contribute to Fe enrichment should they explode 
finally as Type I SN (Iben 1981). 

The rate of nucleosynthesis depends on the current SFR and the upper portion of the
initial mass function. The yield is independent of the former and depends on the 
complete mass range of the IMF since, by definition, it is the ratio of the mass of a 
certain species newly formed and ejected by a generation of stars to the mass of that 
generation that remains locked up in unevolved stars and stellar remnants. The ratio 
ΔY / ΔZ, on the other hand, depends only on the IMF of the evolving stars and most 
critically on its slope, since it determines the relative numbers of helium and heavy- 
element producing stars. Twarog & Wheeler (1982, hereinafter TW) have compared the 
data obtained by Twarog (1980) and Clegg, Lambert & Tomkin (1981) with model 
predictions based on the production rates of WMS and the assumption of a uniform 
SFR. They discovered that the Fe production rate had to be reduced to match the age- 
metallicity relation of Twarog. Secondly, even when the Fe yield was fixed at the value 
dictated by the observations, the enrichment history of other elements could be 
faithfully reproduced if the integrated yields of these elements relative to Fe were 
reduced by fixed amounts compared to the WMS values. This led TW to investigate 
into the possible alterations of the IMF that would result in reduced yields and reduced 
element production rates without jeopardizing the constraint on the variation of SFR. 
They concluded that observations could be reconciled with the theory, if the IMF were 
cut off at some upper limit so that stars that are more massive do not explode at all. For 
example, on the assumption that oxygen came entirely from massive stars, they found 
that a cut-off at 25 Μ

☼ was required by the observations for a slope of the IMF similar 
to the MS value of – 2.3, and in this case both Fe and C were underproduced in massive 
stars. They suggested that these deficiencies could be made up by contributions from 
intermediate mass stars (IMS, 2.5 ☼    9) although this possibility was not < M /  M
explored in detail by these authors. They, however, put rather stringent limits on the 
production of C and Fe from IMS.  

In the present paper, we address ourselves to many of the questions regarding stellar 
nucleosynthesis and chemical evolution of the disc. The recent modifications of the Ο 
star counts have been taken into account to derive new consolidated IMFs. The current 
SFR is then fixed on the basis of the continuity constraint. These IMFs have been used 
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in conjunction with the stellar models of Maeder to estimate the nucleosynthetic yields 
from massive stars, the current rate of nucleosynthesis and ΔY / ΔZ. Nucleosynthesis by 
the intermediate mass stars has also been calculated from the models of Renzini & Voli 
(1981). The net production rates and yields are compared with observations to infer the 
variation of SFR and place constraints on nucleosynthesis from massive stars.

To study the nucleosynthesis pattern of the individual species further, the stellar data 
from A78 have been used. The limits imposed by the galactic abundance data on the 
production of the major nucleosynthesis species 12C, 16O and 56Fe require upper mass 
cut-offs to the IMF. The effect of such a procedure on the yields and the helium to 
heavy-element ratio has been investigated in some detail. On the assumption that 16O is 
produced almost exclusively by massive stars, our calculations indicate that substantial 
amounts of 12C and small amounts of 56Fe are required to be produced by other 
sources which brings into focus the role of the intermediate mass stars in galactic 
nucleosynthesis. These stars produce and eject varying amounts of 4He, 12C, 13C, 14N 
and s-process elements during their quasi-static evolution. If the IMS end their lives as 
white dwarfs after ejecting their residual envelopes as planetary nebulae, they add little 
to the production of other primary species. However, the possibility of a more 
catastrophic end, where some of these stars explode as carbon detonation or 
deflagration Supernovae, has been extensively discussed in the literature (Arnett 1969; 
Tinsley 1977b, 1980a; Wheeler 1978, 1981; Nomoto 1981, 1984). In such an event, 
copious amounts of 56Fe, other iron-peak elements, some intermediate mass elements 
(40Ca, 28Si, 32S etc.) as well as 12C and 16O may be produced from the disrupted cores 
of these stars. The occurrence of such an eventuality is principally controlled by the 
quiescent massloss phenomenon during the red giant phases of evolution of these stars 
and may be prevented altogether in case of efficient massloss. In Section 3 of this paper 
we calculate the magnitude of enrichment due to this process and discuss the rather 
drastic effects this should have on the observed abundances.
 
 

2. Nucleosynthetic yields, current production rate of metals and the ratio of 
helium to heavy element enrichment

 
2.1 Initial Mass Function and the Current Star Formation Rate 

 
The essential first step in determining the IMF is to obtain from counts of stars reliable 
surface densities of main sequence stars as a function of their mass, the so-called present 
day mass function (PDMF). Since massive stars are fewer in number, the errors in the 
derived PDMF are rather large. The poor luminosity designation of Ο stars posed a 
further problem in the earlier determinations. It has also been known for some time 
that the hydrogen-burning main-sequence for massive stars is much wider than 
previously assumed, and Β type supergiants should also be included in the derivation of 
the PDMF. Owing to these drawbacks the PDMFs of Miller & Scalo (MS) and 
Lequeux (1979) are increasingly unreliable at larger masses. Improvements in Ο star 
catalogues with large data sets and proper luminosity identification of these stars have 
corrected for these deficiencies. Using larger volume-limited samples of OB stars, 
several authors, in the last couple of years, have rederived the PDMFs for massive stars 
in the Galaxy (Garmany, Conti & Chiosi 1982; Bisiacchi, Firmani & Sarmiento 1983). 
The surface densities in the different mass intervals arc considerably larger than the 
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corresponding values in MS and the PDMFs extend to higher masses. Fig. 1 displays 
the PDMFs determined by the different authors. The uncertainties in the numbers are 
much less than the differences produced by the new data on Ο stars. The most recent 
determination is due to Humphreys & McElroy (1984). Their derived IMFs are very 
similar to that of Bisiacchi et al. In our calculations the data from Garmany et al. and 
Bisiacchi et al. have been used.  

While the IMF is generally assumed to be independent of time, the time variation of 
SFR is explicitly considered, since the presently observed number of main-sequence 
stars at any mass contains stars of this mass formed at different times but within one 
main-sequence lifetime of the present corresponding to this mass. For the massive stars, 
which are shortlived compared to the age of the Galaxy, the PDMF divided by the 
main-sequence lifetime yields directly the current birthrate. For stars with long 
lifetimes, the history of the birthrate appears in the relation between PDMF and IMF 
(see Tinsley 1980a, for details). MS has emphasized that a choice of an IMF with an 
arbitrary choice of SFR will not, in general, reproduce the PDMF and a consistent 
choice has to be always made in this regard. Further, the continuity of the IMF near the 
present turn-off mass of the Galaxy provides a fundamental constraint on the variation 
of SFR with time. We follow the procedure laid down in MS and derive consolidated 
new IMFs using the counts from MS for stars less than 20 Μ

☼
, and the new counts 

from Garmany et al. and Bisiacchi et al. for stars more massive than 20 Μ
☼

. The 
quantity finally obtained, after satisfying the continuity constraint for a time-varying 
birthrate, is ξ (log m) which is defined as the total number of field stars that have ever 
 

 
Figure 1. The present day mass functions (PDMF) from MS (solid line), Garmany et al. 
(crosses) and Bisiacchi et al. (filled circles). 
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formed per pc2 per logm in the solar neighbourhood. This is related to the normalized 
field star IMF φ (m) through  
 

(1) 
 
Here ψ1 is the current SFR, T0 the age of the Galaxyand b(T0) the birthrate at T0 in units
of the average birthrate. All through the paper m will denote the initial main-sequence 
mass in solar units. If SFR decreased with time, for an assumed T0 of 12 × 109 yr, the 
extreme present birthrate satisfying the continuity constraint (MD birthrate in MS 
parlance) is given by b(T0) = 0.24. For a uniform birthrate b(T0) = 1. We have 
integrated Equation (1) to obtain ψ1 for the prescription of a uniform birthrate and a 
maximum allowable decreasing birthrate. Simple power-law fits to these IMFs and the 
derived values of ψ1 are summarized in Table 1. It is seen that ψ1 is relatively insensitive 
to the changes at the upper end of the IMF brought about by the new counts on Ο stars. 
The φ(m)’s for the uniform birthrate are somewhat different from the φ(m)’s for the 
MD birthrate. We emphasize that the use of an arbitrary ψ1 with any φ(m) will, in 
general, lead to erroneous results. 
 
 

2.2 Production Rates and Nucleosynthetic Yields from Massive Stars
 
Once φ(m) and ψ1 are known, it is straightforward to obtain the current production 
rates of elements and the nucleosynthetic yields. Arnett (A78) computed the absolute 
yields of abundant nuclei as a function of the helium core mass, Ma, which was related 
to the initial main-sequence mass Μ of the star through a M (Μα ) transformation based 
on conservative evolutionary sequences. Since then, Maeder (1981a, b) has evolved 
models with massloss and obtained stellar yields as a function of the stellar mass. An 
important feature of the mass-losing models is the evaluation of the separate 
contributions to the enrichment from the stellar wind and the final supernova event. 
The stellar wind contribution is important during the longer-lived H and He-burning 
phases and for helium and some of the CNO elements. Maeder’s models thus provide 
an opportunity to study in greater detail the production of helium and also the ratio of 
helium to heavy-element enrichment. We have used Maeder’s models to compute the 
 
Table 1. The initial mass function and the current star formation rate.
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nucleosynthetic yields and the current production rates. We have considered his case Β 
results only. In Maeder's work the stellar yields are given by mpym and mpym which are 
the respective masses of newly synthesized helium and metals ejected into the 
interstellar medium from a star of initial mass m. Both pym and pzm are the sums of the 
contributions from the stellar wind(pwind)and the supernova event(psn). While pwind

  is
substantial for all masses, Maeder's work shows that pwind is important only for certain
special cases when Wolf-Rayet stars of the type WC may form.

The production rate of newly synthesized metals at time t is then
 

 
(2) 

 
where ψ(t) is the SFR, τm the lifetime of the star of mass m and mt the turn-off mass. To 
evaluate the current production rate, t is replaced by the age of the Galaxy and mt by m1, 
the present turn-off mass. Since most of the synthesis is effected by rather massive stars 
for which τm    T0, expression (2) is simplified further by the use of the instantaneous
recycling approximation to  
 

(3) 
 
where ψ1 is the current SFR. If a star of mass m leaves a remnant of mass rm, the 
fractional mass returned to the interstellar medium per generation is given by
 
 

(4) 
 
Therefore, the heavy element yield 
 

(5) 
 
Similarly, for helium 
 

(6) 
 
and 
 
 
 
For evaluating R, we have used the prescription of Iben & Truran (1978) for the mass of 
the white dwarf as a function of the initial main-sequence mass and have assumed 
rm = 1.4 for m > 8.  

The results are presented in Table 2a. The rate of nucleosynthesis is estimated to be 
much higher than the earlier estimates (Chiosi & Caimmi 1979; Chiosi 1979; Mallik 
1981). The earlier low values are attributable to the use of a wrong IMF in the case of 
Mallik (1981) and to the use of a wrong Μ (Μα) transformation in the case of Chiosi & 
Caimmi (1979) and Chiosi (1979). Thus, massloss in massive stars does not seem to 
produce any major effect on the final rate of nucleosynthesis. The rate is a bit higher 
than the WMS rate partly due to the use of a different IMF and partly due to different 
stellar yields. The ratio of helium to heavy-element enrichment is uniformly low and, 
contrary to the assertion of Chiosi and Caimmi, we conclude that massloss has little 
effect on this ratio even though the wind contribution to He-enrichment has been 
explicitly taken into account here.  

Ymimim

Zm

<<
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2.3 Contribution of Intermediate Mass Stars 
 
Although massive stars are generally held responsible for element synthesis, the 
intermediate mass stars make significant contribution to the enrichment of 4He, 12C, 
14N, 13C and s-process elements. We have used the stellar yields from Renzini & Voli 
(1981) to estimate the enrichment rate of helium and CNO elements. The dredge-up 
and mixing of enriched material into the envelopes of these stars and hence the final 
enrichment of the interstellar medium are sensitively dependent on the massloss 
parameter η, and the ratio of the mixing length to the pressure scale height, denoted by 
the parameter α. Higher rates of massloss reduce the time spent by these stars on the 
asymptotic-giant branch and therefore the growth of the core is also reduced and the 
total amount of matter dredged up is less. In the absence of any massloss, enormous 
amounts of  12C and s-process elements would be produced by these stars, far in excess 
of the requirements of galactic nucleosynthesis (Iben 1981). The effect of the parameter 
α is to induce burning at the base of the convective envelope which causes further 
processing of the material dredged up following each He-shell flash episode. The 
consequence of this is to produce fresh 14N and 13C in CNO cycle at the expense of 12C 
and 16O which were produced in He-burning. Some amounts of 4He are also produced 
in this case. To have representative estimates of the enrichment caused by intermediate 
mass stars we have chosen three of the cases considered by Renzini & Voli: Case a, with 
η =       = 0, case e with η =   , α = 2, and case f with η =    α = 0. In Table 2b, the 
results are given. It is obvious that intermediate mass stars are an important source of 
4He and they add to the metals mostly in the form of CNO elements. The 
approximation of instantaneous recycling used here for the IMS is still justified because 
the bulk of the contribution comes from m > 3.0 with peaks around m = 5 or 6, and the 
main-sequence lifetime of a 3 M

☼
 star is only 0.3 Gyr.  

 
 
Table 2a. Production rates and yields from massive stars.  

 
 

Table 2b.   Contribution from intermediate-mass stars.
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The total production rates are the sums of the contributions from massive stars and 
intermediate mass stars. These along with the yields are given in Table 3 The 
proportionate increase in helium production due to the contribution of intermediate- 
mass stars is larger. These yields imply ∆Y / ∆Ζ = 0.58 –0.69, for an initial Y = 0.28 The 
ratio is somewhat increased over the values obtained when only massive stars were 
considered (vide Table 2a). However, it is less than unity.

It should be noted that in the absence of massloss, the vast majority of these stars 
(2     m     8) would proceed to thermonuclear disintegration following carbon ignition 
in their degenerate cores. As the cores disrupt totally, large amounts of Fe-peak 
elements as well as carbon and oxygen should be added to the galactic pool. In our 
discussion so far, the rather drastic effects of core disruption have not been considered. 
For the massloss parameters used here, the maximum initial mass of a star becoming a 
white dwarf is either 4.75 (η =   ) or 6.0 (η =   ). Thus a crucial gap is left open, between a 
4.75 or 6.0, and 8.0 or 9.0 solar masses, for core disruption Supernovae to occur. We 
postpone a discussion of this possibility to Section 3.

 
 

2.4 The Yield 
 
The heavy element yields presented in column 6 of Table 2a and column 5 of Table 3 are 
rather high. Pagel & Patchett (1975) were the first to analyse in detail the abundance 
data in the solar neighbourhood and they arrived at a value of the yield between 0.004 
and 0.006. Since then, several other studies have been made and somewhat higher values 
of yields have been obtained. Twarog (1980), in his study of the age-metallicity relation 
of the disc stars, determined the present value of ∆Z / yz to be 1.76, which, for a value of 
∆Ζ = 0.02 leads to a yz = 0.0114. Peimbert & Serrano (1982) have derived yields from 
observational data on a number of galaxies and in a variety of galactic objects. The 
range in the yields is rather narrow with all the values lying between 0.002 and 0.014. 
Their value for the solar neighbourhood is 0.007, almost a factor of two lower than 
Twarog’s. Tinsley (1980b) has emphasized that all consistent models for the solar 
neighbourhood predict that the mean metallicity of disc stars lies within 20 per cent of 
the yield. Thus, assuming that the mean metallicity ∆Ζ = 0.8Ζ

☼, one obtains for the 
heavy element yield a range 0.013–0.019. All these values are lower than the computed 
yields based on the IMF we have advocated. From a detailed analysis of the data from 
Clegg, Lambert & Tomkin (1981) with the help of a standard infall model, Twarog & 
Wheeler (TW) came to the conclusion that the theoretical yields in WMS were too high. 
 
 

Table 3.   Total production rates and yields.  
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The IMFs used here are derived from higher stellar surface densities than those 
obtained in MS. Therefore, it is not surprising that the yields determined here are even 
higher. Unless the stellar yields are in error by large factors, there is no escape from the 
fact that the theoretical yields computed here are incompatible with observations.
 
 

2.5 Effect of Cutoffs in the IMF 
 
As anticipated in the introduction, the nucleosynthetic yields per generation can be 
reduced without altering the IMF or the stellar yields if we assume that stars beyond a 
certain upper mass limit evolve to total collapse. This would help reduce the net 
contribution by massive stars to metal production.

The upper mass cutoffs in the IMF will also have the effect of reducing the current 
production rates. This leads to the following problem. A low current rate of nucleo- 
synthesis implies that the past SFR was much higher to produce the currently observed 
abundances. However, other evidences (Twarog 1980) and the continuity constraint on 
the IMF require that the SFR is more or less uniform. The revised IMFs and Maeder’s 
stellar yields used above, make the current production rate sufficiently high such that 
the need for a higher SFR in the past is precluded. With the introduction of the cutoffs 
in the IMF now, are we violating the constraint of uniform birthrate? In an effort to find 
an answer, we have introduced cutoffs to the IMF and recomputed Σz, ΣY, yz, yY, R and 
derived 〈 ψ 〉 / ψ 1 in each case. The results are displayed in Fig. 2, where mu denotes the 
upper limit on the main-sequence mass beyond which stars are presumed to proceed to 
total collapse without adding to the enrichment of the ISM. As mu increases, Σz goes up 
and so does yz. 〈 ψ 〉 / ψ 1 decreases. We find that there is a range in mu for which yz lies in 
the range of observed values and 〈 ψ 〉 / ψ 1 is within the limits consistent with a near 
uniform birthrate. With the IMF 1 (a) a cutoff at mu = 48 produces an yield yz = 0.015. 
The production rate of metals is 0.029 M

☼
 pc–2 Gyr –1 and 〈 ψ 〉 / ψ 1 = 2.7. For 

mu = 39, yz = 0.011 and 〈 ψ 〉 / ψ 1 = 3.5. This value is marginally consistent with a near 
uniform birthrate. Similar cutoffs are obtained for the IMF l(c).
 
 

 
Figure 2. Yield and the variation of the star formation rate as a function of mu. A value of 
Σ = 50 M

☼
 pc -2 has been used.  

. .

.
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A further effect of introducing the cutoffs in the IMF is to change the value of 
∆Y / ∆Z. Since helium production is weighted heavily towards the lower masses, yY is, in 
general, less sensitive to the choice of mu. Moreover, stars with m > mu evolve through 
the H-and He-burning phases before collapsing to black holes and pwindis non zero for 
them. Thus yy/yz dramatically increases with decreasing mu and ∆Y / ∆Z is increased. 
For mu = 40, yy/yz = 1.76 while for mu = 30, it goes up to 2.47. We suggest that the 
large values of helium to heavy-element enrichment are an indirect indication of the 
massive stars evolving to black holes instead of producing Supernovae and not an effect 
caused by internal adjustments in the star as a result of massloss (cf. Chiosi & Caimmi
1979). 

 
3. The element enrichment pattern and the effect of carbon deflagration 

Supernovae 
 
In the previous section we discussed the metal production rate and heavy-element yield 
based on the stellar models of Maeder. Individual species were not considered. 
However, to gain a clearer understanding of the pattern of nucleosynthesis, it is more 
useful to consider the individual species. This is best done with the data from A78 where 
specific yields of He, C, O, Ne, Mg, Fe + Si as a function of the stellar mass are given. 
Observations as well as theory have suggested different enrichment histories for the 
primary elements like C, Ο and Fe (Clegg 1977; Tinsley 1979; Sneden, Lambert & 
Whitaker 1979). TW showed that a standard infall model with uniform birthrate was 
capable of reproducing this varied history of enrichment provided the yields were 
substantially reduced. Through this analysis they put limits on the contribution to 
element enrichment by IMS. The production of carbon in progenitors of planetary 
nebulae is a well-established fact. The important recent observation by Wu et al. (1983) 
of strong Fe II absorption lines in what is believed to be the stellar ejecta from SN 1006 
and the earlier discovery by Kirshner & Oke (1975) of overabundance of iron in SN 
1972e in NGC 5253 provide evidence of iron production in Type I Supernovae which 
are believed to be the result of core disruption of relatively low-mass stars. We now 
investigate in some detail the contribution of IMS to galactic carbon production and 
the impact of Type I SN nucleosynthesis on the production of carbon, oxygen and iron. 
 
 

3.1 Constraints on Specific Production Rates 
 
Based on the abundance data of Clegg, Lambert & Tomkin (1981), and the age- 
metallicity relation of disc stars (Twarog 1980), Twarog & Wheeler were able to derive 
the net yield of iron and the ratio of the yields of carbon, neon, magnesium and iron to 
that of oxygen. The absolute production rates of oxygen, carbon and iron obtained by 
them are  
 
 
 

(3.1) 
 
The solar abundances of Cameron (1973) have been used in arriving at these numbers. 
These absolute rates have a 30-40 per cent uncertainty in them. In the following 
 

Ym
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analysis, we shall accept as observed the values in (3.1). We further assume that the 
birthrate has been uniform during the evolutionary lifetime of the disc, and the IMFs 
we use accordingly are l(b) and (d) from Table 1. The production rates of carbon, 
oxygen and iron as a function of mu are displayed in Fig. 3. Here, mu has the same 
significance as in Section 2. An examination of the figure reveals the following:
 
(i) For the IMF 1 (b), at mu = 28, the production rate of oxygen equals the net galactic 

production rate. The corresponding production rates of carbon and iron are 
respectively 6.26 × 10-12 M

☼
 pc-2 yr-1 and 3.96 × 10-12 M

☼
 pc-2 yr-1. Carbon 

is marginally underproduced in massive stars while the iron production rate seems 
adequate. Since A78 yields refer to Fe + Si and not Fe alone, it is possible that a part 
of the contribution here comes from unburned Si. Moreover, if a higher iron 
production rate of 4.9 × 10-12 M

☼
 pc–2 yr–1 were assumed (see Nomoto, 

Thielemann & Wheeler 1984), there is a predicted deficiency of 18 per cent in iron 
production from massive stars. On the assumption that oxygen is produced entirely 
in massive stars, the combination of our birthrate function and the stellar yield data 
from A78 precludes the participation of stars more massive than 28 M

☼
 in 

nucleosynthesis. At mu = 28 the relative yields of carbon and iron are 0.43 and 0.28 
respectively. The corresponding solar values are 0.42 and 0.22.

 

 
Figure 3. (a) Oxygen, (b) carbon, and (c) iron production rates as a function of mu. The upper 
line in each case is calculated with the IMF 1 (b) and the lower one with 1(d).
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(ii) For the IMF 1 (d), the oxygen production rate from massive stars equals the galactic 

production rate at mu = 30. The corresponding production rates of carbon and 
iron are 6.1 × 10 -12 M

☼ pc -2 yr-1 and 3.6 × 10-12 M
☼

 pc -2 yr-1 respectively. 
This leads to a deficiency of 19 per cent in carbon production and a maximum 
deficiency of 27 per cent in iron production. These deficiencies are significant as 
they provide constraints on the production of iron and carbon from alternative 
sources, in particular, the IMS. 

 
 

3.2 Carbon Production in Planetary Nebulae 
 
The intermediate-mass stars contribute to element enrichment through the three 
dredge-up episodes which were first enumerated and quantified by Iben & Truran 
(1978). The eventual journey of these stars to the stellar graveyard of white dwarfs is 
critically dependent upon the massloss rate during the final evolutionary stages which 
controls their ability to reduce themselves below the Chandrasekhar mass limit just 
prior to carbon ignition in their degenerate core. There is compelling observational 
evidence to the fact that white dwarfs in many clusters have evolved from stars as 
massive as 5–8 M

☼
 (Romanishin & Angel 1980; Weidemann 1977; Anthony-Twarog 

1982; Weidemann & Koester 1983). Planetary nebulae, which represent a transitory 
phenomenon in the final evolution of these stars, show enhancements of He, C and Ν 
(See Torres-Peimbert 1984 for details). French (1983) has derived carbon abundances 
in a large number of planetary nebulae and concluded that carbon was enhanced in the 
progenitors by a factor of 2 at the time of ejection of the envelopes. According to him, 
the enhanced carbon mass in the nebulae observed is 3.6 × 10–3 Μ

☼ per nebula. The 
observed birthrate of planetary nebulae depends sensitively on the adopted distance 
scale but all the derived birthrates lie in the range 2.4–12.0 × l0-10 pc-2 yr-1 (Mallik 
1984). Thus the total carbon production rate from planetary nebulae amounts to 
0.87–4.3 × 10-12 M

☼
 pc-2 yr-1. Therefore, planetary nebulae alone can provide 10-50 

per cent of the galactic carbon. If massive stars produced carbon at the predicted 
efficiency, carbon would be over-produced. The models of Renzini & Voli may also be 
used to derive carbon production rates in the wind phases and planetary nebula ejection 
phases of stars in the interval 2.5     m     8. A variety of values of η and α are used. The 
results are presented in Table 4. The production rates are too high to be compatiable 
with observations when η=    and α = 0 and 1; they are in the range of observed values 
when η =    and α =2 or η =    and α = 1.5. Thus, whether the observed carbon 
production rate in planetary nebulae indicates a high massloss rate or an efficient 
burning at the base of the convective envelope, cannot be decided by looking at carbon 
production alone. However, the stellar models with appropriate choices of η and α are 
 
 
Table 4. Carbon production in IMS.  
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3
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successful in producing the right amount of carbon required by the observations of 
planetary nebulae. Further, carbon production in massive stars is constrained to 
perhaps half the observed galactic production rate.
 
 

3.3 The Iron Production Rate and Carbon Deflagration Supernovae
 
The situation is quite different with iron. First, apart from the two observations 
mentioned in the beginning of the section, there is no unambigous identification of iron 
production in any supernova event (Woltjer 1984). Yet the most plausible model for 
producing the uniform exponential tail of SN I light curves is the radioactive decay 
model involving the parent 56Ni whose eventual decay product is 56Fe (Arnett 1979; 
Colgate & Petschek 1980). Since SN I account for roughly 50 per cent of the net 
supernova rate, this would make them a major source of iron. Second, although it is 
generally recognized that SN I originate from relatively low mass stars, the exact nature 
of their progenitors is not known. It has often been contended that they are terminal 
explosions of those intermediate-mass stars which ignite carbon in their degenerate 
cores (see for example Tinsley 1979). On the other hand, observations of planetary 
nebulae and cluster white dwarfs suggest that few intermediate-mass stars may actually 
evolve to the point of carbon ignition. However, there are alternative scenarios for 
producing SN I involving accreting white dwarfs in binary systems with red supergiant 
companions, which appear to be quite plausible. The theoretical production rate of 
these events on the assumption that they are carbon detonation of single stars is 
consistent with the observed rate. Thus, based on the algorithm of Renzini &Voli with 
η = , the deathrate of stars becoming Supernovae of this type equals 
0.059 pc-2 Gyr-1 and for η =    it equals 0.027 pc -2 Gyr-1. The observed SN I rate 
from Tammann (1982) is 0.029 pc-2 Gyr-1. If SN I were all carbon detonation 
Supernovae releasing 1.4 M

☼
 of iron per event (Arnett 1969), the iron production rate 

from this source alone would be 4.06 × 10-11 M
☼

 pc -2 yr-1 which is a factor of ten 
higher than the net galactic production rate given in (3.1). For a uniform birthrate this 
would lead to an iron abundance of 0.01. It is impossible that the observations are in 
error by any factor like this. This problem with the overproduction of iron practically 
rules out the occurrence of carbon detonation Supernovae.

In recent years an alternative model for the explosion has been developed principally 
by Nomoto (1981) in which a deflagration wave rips through the star incinerating the 
inner portion of the core to iron but ejecting the outer layers of the core as unburned 
12C and 16O. The carbon deflagration models have been successful in reproducing the 
light curves of Type I Supernovae. Numerous deflagration models have been computed 
by Nomoto and collaborators (see Nomoto 1984) and by Woosley, Axelrod & Weaver 
(1984). The crucial feature of these models relevant to the present discussion is that 
although the fraction of iron ejected is less, moderate to large amounts of carbon and 
oxygen are also ejected by them. We have considered only two representative models, 
Model W7 of Nomoto (1984) and Model 5 of Woosley, Axelrod & Weaver (1984). They 
provide two extremes of carbon and oxygen production while the mass of iron ejected is 
roughly similar. These models serve our purpose of highlighting the problems of 
galactic nucleosynthesis when such events occur at the observed SN I rate. The
production rates and the yields of carbon, oxygen and iron are tabulated for both W7 
and Μ5 (Table 5)where we have used the observed SN I rate for the calculation. When 
 

3
2  3

1   –
–
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Table 5.   Carbon, oxygen and iron production in carbon deflagration models.

 
 
these are compared with the results of the previous sections and the constraints 
imposed by the observations [cf. (3.1)], it is obvious that the iron production rate
greatly exceeds the requirements. Even if carbon deflagration Supernovae were the only 
source of iron in the Galaxy, at the currently observed SN I rate they would produce 
several times (2–3) the observed abundance of iron. In reality, things are worse since 
massive stars also contribute to iron production. Almost all of the galactic carbon could 
also come from the carbon deflagrations alone which contradicts the results from 
Section 3.2 that at least half is produced in PN progenitors. This is true of all those 
models that eject several tenths of solar mass of carbon per event. It is also seen that 
these models predict reasonable amounts of 16O production, although they may not 
produce enough to maintain the net galactic production rate. Even then oxygen 
production in these models is something of an embarassment for nucleosynthesis since 
all our considerations were based on the assumption that 16O is entirely produced by 
massive stars. Oxygen has always been regarded as a signature of massive star 
nucleosynthesis. Observations of Cas A and some other SNR tend to support this view 
(Kirshner 1982). Theoretically, an examination of the stellar mass fractions returned in 
the form of various species clearly shows the preponderance of oxygen in the ejecta 
from massive stars (cf Fig. 2, Audouze & Tinsley 1976). Therefore, substantial oxygen 
production by lower mass stars will upset many seemingly well-established facts, 
besides violating our specific assumption here that all oxygen comes from massive stars. 
The carbon deflagration events clearly infringe upon one or more constraints imposed 
by observations and conventional wisdom on galactic nucleosynthesis.

A simple-minded solution would be not to have such events at all. However, this is 
not really a solution since (i) Supernovae of Type I do occur in nature and (ii) the carbon 
deflagration models reproduce a number of key characteristics of observed SN I events 
without violating any of their observational features (Sutherland & Wheeler 1984). One 
could perhaps ask by what factor the iron yield from these models should be reduced to 
satisfy the constraints on the production rates. To choose a particularly favourable case 
if we assumed that only 50 per cent of the Fe + Si yield as estimated in A78 was ejected 
as true iron, the rest being unburned silicon, our calculations show that massive stars 
would still contribute 2.0 × 10-12 Μ

☼
 pc-2 yr-1 to the iron production rate. If the 

remainder came from SN I and specifically from carbon deflagrations, the required 
contribution of these events should amount to at most 2.9 × 10-12 M

☼ pc-2 yr-1 . 
Thus, the expected amount of iron per deflagration event is 0.0029/0.029 or 0.1 M

☼
. 

This is about a sixth of what the models predict. However, Sutherland & Wheeler assert 
that the kinematics of the SN I event requires a minimum of 0.7 M

☼ of incinerated 
material in the explosion to generate the observed ejecta velocities. Also the problem  
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with excess carbon from these events will still remain. It is unlikely that the SN I rate is 
grossly overestimated.  

A glimmer of hope has been provided recently by the proposed revision of a crucial 
nuclear reaction rate, namely the rate for the reaction 12C (α, γ)16Ο. Arnett & 
Thielemann (1984) quote recent experiments which suggest an enhancement of this 
reaction rate by a factor of 3-5 over the conventional value and discuss the implications 
of this upward revision. An enhanced 12C (α, γ )16O rate enhances the 16O/ 12C ratio 
after core helium burning and therefore, during the subsequent thermonuclear phases 
one obtains less carbon-burning products and more oxygen-burning products. It seems 
logical that in the final yields of massive stars, more oxygen and less carbon would be 
present as the contribution from zones processed through helium burning. We already 
found that the yields from A 78 required an upper mass cut off to the IMF at 28-30 M

☼  
to have the theoretical oxygen production rate equal the observed rate in the solar 
neighbourhood. The same considerations with an enhanced oxygen yield should now 
lead to an upper mass cut off which is lower than 28 M

☼
 It is difficult for us to say, at the 

moment, how the iron yield from massive stars is affected. But the contribution of the 
massive stars to the production of 12C would surely be considerably reduced such that, 
even if almost all of the galactic carbon originates in lighter stars through carbon 
deflagration and planetary nebula events, no serious overproduction problem would be 
encountered.  

Finally, if the bulk of the nucleosynthesis in the Galaxy be effected by stars in the 
mass range 530 M

☼
, the death rate of these stars is found to be 0.073 pc-2 Gyr-1 or a 

galactic average of 10.3 yr-1. The observed supernova rate from Tammann (1982) is 
0.063 pc-2 Gyr-1. These rates are equal within the limits of observational un- 
certainties. Therefore, a typical supernova event is also a typical nucleosynthesis event. 
 
 

4. Summary and conclusions 
 
In this paper we have attempted to arrive at a consistent picture of galactic 
nucleosynthesis based on improved data on stellar yields and new determinations of the 
IMF and the current stellar birthrate. The current rate of nucleosynthesis is high 
enough to obviate the need for a higher star formation rate in the past to explain the 
currently observed abundances. The effect of massloss on nucleosynthetic yields is 
negligible. However, the observed yields are low and to be consistent it is required that 
stars above a certain mass do not participate in nucleosynthesis. The observed large 
values of the helium to heavy-element enrichment ratio may be an indirect indication 
that this actually happens.  

If the observational constraints on the current production rates of iron, oxygen and 
carbon are to be believed, then, stars heavier than 28–30 M

☼
 do not effectively 

participate in nucleosynthesis. Observations of planetary nebulae as well as theoretical 
dredge-up models of IMS indicate that nearly half the galactic carbon comes from PN 
progenitors. If carbon deflagration models correctly represent the Type ISN event,
substantial amounts of galactic carbon and oxygen could come from them. At the 
observed SN I rate these models would overproduce iron by a factor of 2 to 3. The role 
of massive stars in element synthesis is even more suppressed in that case. While there 
does not seem to be any known way of preventing production of iron in massive stars, 
the proposed enhancement of the rate of 12C(α, γ)16O works in the right direction for 
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carbon. This will certainly reduce the carbon production in massive stars considerably 
and enhance their oxygen yield. The galactic oxygen production rate may then be 
matched by synthesis in stars up to a mass mu which is even less than 28 Μ

☼
 which, in 

turn, will help reduce the iron yield from massive stars. While the carbon production in 
deflagration events could then account for most of the galactic production, the problem 
of overproduction of iron due to these events is not totally solved. We have only 
considered the element synthesis pattern in the galactic disc. Similar considerations 
may not apply to the halo at all. Observations indicate a very different enrichment 
history for the halo. 
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Abstract. We present the higher-dimensional perfect fluid generalizations 
of the extended Bianchi type-VIh vacuum space-times discussed recently by 
Demaret & Hanquin (1985). It is shown that the Chodos-Detweiler 
mechanism of cosmological dimensional-reduction is possible in these cases. 
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1. Introduction 
 
The topic of higher-dimensional cosmologies has recently received much attention 
(Chodos & Detweiler 1980; Freund 1982; Sahdev 1984; Lorenz-Petzold 1984a, b; 
1985a-d). It has been suggested that such cosmologies play an important role in the 
very early universe (Chodos 1984; Chodos & Myers 1984; Appel & Dresden 1984). In 
the course of time, the influence and effect of extra dimensions D   1 (N=1+d+ D) 
must have diminished or changed. An easy way to visualize this process is that in the 
course of time, the usual d = 3 dimensions kept on expanding, while the extra 
dimensions D   1 contracted very rapidly to distances of the order of the Planck 
length. Such MN=|R  Md  MD space-time models were first constructed by 
Chodos & Detweiler (1980) (see also Belinskii & Khalatnikov 1972; Forgacs & Horvath 
1979; Barrow 1983; Tosa 1984; Mann & Vincent 1985).

An interesting paper in this respect has been recently published by Demaret & 
Hanquin (1985). Most of the studies done so far are of the higher-dimensional 
generalization of the anisotropic (1 + 3)-dimensional Bianchi type-I model (see 
Lorenz-Petzold 1985c). However, no generalization of the Petrov-Bianchi classification 
exist in (1 + n)-dimensions (n = Ν – 1) (Petrov 1969; Sahdev 1984). A simple definition 
was given by Demaret & Hanquin (1985). A N-dimensional spatially homogeneous 
model is defined as a N-dimensional space-time possessing a (N – 1)-dimensional 
group of isometry acting simply transitively on (N – 1)-dimensional space-like hyper- 
surfaces. This definition does not probably recover all possible cases of spatially 
homogeneous models in (1+3)-dimensions (Ryan & Shepley 1975; Kramer et al. 1980). 
However, the definition given by Demaret & Hanquin is already sufficiently rich as to 
recover a large set of spatially homogeneous models.  

In this paper we discuss the higher-dimensional perfect fluid field equations of a 
generalization of the (1 + 3)-dimensional Bianchi type-VIh  space-time, which includes 
also the Bianchi type-V and the Bianchi type-Ill as special cases. Only the vacuum case 
was discussed by Demaret & Hanquin (1985). 
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2. Field equations and solutions 
 
We consider the metrics  
 

(1) 
 
where Rj = Rj(t)(j = 1,…, N – 1; n = Ν – 1) are the cosmic scale functions and 
Pi = const. The corresponding perfect fluid field equations to be solved are given by 
 
 

(2a)  
 

(2b) 
 

(2c) 
 

(2d) 
 

(2e) 
 

(2f) 
 
where H j = (In Rj)’ are the Hubble parameters, u = R2 …RN-1, g = RP2 …RpN-1,
dt = R1 dη, ( )’ = d/dη, i = 2,…., Ν – 1 and ρ and ε are, respectively, the pressure 
and energy density of the perfect fluid matter. In cosmology, we are mainly interested 
in the cases ε = 0 (vacuum), y = 1 (dust), y = 2 (stiff matter) and γ = N /(N – 1) 
(radiation). From Equation (2e) we obtain the conservation equation ε = M(R1 … 
RN-1)-y , Μ = const.  

We first consider the cases ε = 0 and y = 2. From the linear combination of 
Equations (2b) we obtain  
 

(3)
 
with the general solutions  
 
(i) 
 
(ii) 
 

and the special solution  
 
(iii) 
 
Equations (2a) and (2b) can now be easily integrated (Equation 2d is nothing but the 
constraint equation on the constants of integration) to give:
 
(i) 
 
 
 
 

(5a)
 
(ii) 
 
 

(5b)

N-12

(4a)

(4b)

(4c)
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(iii) 
 

(5c)  
where cj, a = const.  

The stiff matter solutions (Μ ≠ 0) are new. By setting Μ = 0 we rediscover the 
vacuum solutions (p = 1, if p ≠ 0 without loss of generality) discussed by Demaret & 
Hanquin (1985). The four-dimensional solutions (5a) (i = 2, 3) are due to Collins (1971) 
(in a somewhat different form) and Ruban (1978a) (see also Wainwright, Ince & 
Marshman 1979), which include the Bianchi type-VIh vacuum solutions of Ellis & 
MacCallum (1969) and the Bianchi type-V solution given by Joseph (1966) (pi = 1). The 
special solution (5b) has no analogue in (1 + 3)-dimensions. Our solution (5c) has been 
discussed in four-dimensions by Lifshitz & Khalatnikov (1963a, b), Collins (1971, 
1977), Evans (1974, 1978), Siklos (1981), Ruban (1978a, b), Siklos (1981), Ruban, 
Ushakov & Chernin (1981), Belinskii, Khalatnikov & Lifshitz (1982), Wainwright 
(1983) and Wainwright & Anderson (1984) (see also the recent paper by Rosquist & 
Jantzen 1985).  

We next consider the special power law perfect fluid solutions:  
 

(6)
 
where a, ci — const. It follows that  
 
 

(7a) 
and thus a can be re-expressed in terms of pi:  
 

(7b) 
 
which yields in addition to γ ≠ 2 the condition y ≠  2  (Ν – 1). According to Equation 
(2c) we have also  
 (i) 
 (8a) 
(ii) 

 
(8b)  

 
and the value of Μ is determined by Equation (2d).  

Our solutions (6–8) are the higher-dimensional special perfect fluid generalizations 
of the (1 + 3)-dimensional solutions first given by Collins (1971). Such solutions are of 
much interest in cosmology and have been discussed recently in (1 + 3)-dimensions by 
Ruban, Ushakov & Chernin (1981), Barrow (1982, 1984), Wainwright (1983, 1984) and 
Wainwright & Anderson (1984) (see also the recent paper by Lorenz-Petzold 1985e). By 
setting a = c2 = c3, c4 = b, we obtain the isotropic solution in (1+4)- 
dimensions with  
 

(9) 
 
leading thus to a contraction of the physical unobservable dimension and an expansion 
of the three physical dimensions.  
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We finally consider the space-times defined by pi = 1, which are the higher- 
dimensional generalization of the (1 + 3)-dimensional Bianchi type-V cosmologies. 
Exact solutions (besides the ones given by Equation 5) can be obtained in the cases 
y = N /(N – 1 ) (radiation) und γ = 1 (dust). Without going into all the details we 
present only the results (see Lorenz-Petzold 1985f for derivation):
 

(10a) 
 
 
 
 
 

(10) 
 
where b, ci = const. By setting i = 2, 3, we rediscover the (1 + 3)-dimensional Bianchi 
type-V radiation solution first given by Ruban (1977a, b) (Note that these papers are 
not quoted by Kramer et al. 1980).  

The dust case can be reduced to the solution of a generalized Friedmann equation: 
 

 

where a = const., R = R1 Ri =  RSci, ∑ci =  0, ci = const. The case Ν =  4 is nothing 
but the (1 + 3)-dimensional Bianchi type-V dust solution first given by Schucking & 
Heckmann (1958), which can be solved explicitly in terms of elliptic functions. This 
completes our study of the higher-dimensional Bianchi type-VIh perfect fluid field 
equations. According to the relations Σci = const., it is always possible to construct 
solutions such that d = 3-dimensions are expanding while the extra dimensions D    1 
are contracting to an unobservable scale.  
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Abstract. We derive some new exact 7-dimensional cosmological solutions 
⎜R  I  N, where N = I, II, VI0, VII0, VIII and IX are the various 3- 
dimensional Bianchi models. The solutions given are higher-dimensional 
generalizations of the mixmaster cosmologies. There is a strong influence of 
the extra spaces N, which results in a fundamental change of the 3- 
dimensional cosmology. 
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1. Introduction 
 
The topic of higher-dimensional cosmologies is of much interest in view of the modern 
Kaluza–Klein picture of the universe (Lee 1984). In this approach the basic world 
manifold is of type Mn =⎜R  Pd  QD, where Pd, QD are some d, D-dimensional
spaces. By taking d = 3, D     1, the three-space P3 should be identified with one of the 
isotropic Friedmann–Robertson–Walker (FRW) models or with one of their aniso- 
tropic generalizations of the various Bianchi types I–IX (Ryan & Shepley 1975; Kramer 
et al. 1980). The internal (or extra) space QD must be some higher-dimensional 
generalization of the Kaluza–Klein S1 sphere. For instance, in d = 11 supergravity a 
natural candidate for QD is one of the various S7-spheres (Lorenz-Petzold 1985; Alvarez 
1984; Fujii & Okada 1984; Gleiser, Rajpoot & Taylor 1984). However, there are an 
embarassingly large number of other solutions with other topologies (Bais, Nicolai & 
van Nieuwenhuizen 1983; Castellani, Romans & Warner 1984).

Recently, some 1 + 3 + 3 = 7-dimensional Bianchi–mixmaster cosmologies of types 
I  IX (Furusawa & Hosoya 1984) and IX  IX (Tomimatsu & Ishihara 1984) have 
been constructed on the basis of higher-dimensional gravity. In (1+3)-dimensions, 
type-I leads to the well-known Kasner solution while type-IX is known as the 
mixmaster model (Misner 1969; Barrow 1984). It is well known that the original 
mixmaster model shows a chaotic behaviour near the initial singularity (Barrow & 
Tipler 1979; Barrow 1981; 1982; 1984; Chernoff & Barrow 1983; Elskens 1983; Zardecki 
1983; Lifshitz et al. 1983). However, there are also some controversial results concerning 
the possibility of ‘mixing’ (Doroshkevich & Novikov 1970a, b; MacCallum 
1971; Doroshkevich, Lukash & Novikov 1971). It is now interesting to see that the 
influence of the extra dimensions may prevent the chaotic behaviour near the initial 
singularity (Furusawa & Hosoya 1984; Tomimatsu & Ishihara 1984). 
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In view of this it becomes interesting to study some more general higher-dimensional 
cosmologies of type I  N, where Ν denotes one of the Bianchi types I, II, VI0, VII0, 
VIII and IX with different topologies (The (1 + 3)-dimensional type-VIII has been first 
considered by Lifshitz & Khalatnikov 1970; for types VI0, VII0 see Khalatnikov & 
Pokrovski 1972; Lukash 1974; Ruban 1978; Belinskii, Khalatnikov & Lifshitz 1982; 
Lorenz-Petzold 1984; Jantzen 1984). In this paper we solve the corresponding field 
equations in 7-dimensions.  
 
 

2. Field equations and solutions 
 
In choosing a local orthonormal basis σµ, we can put the metric on ⎜ R       I     N in the
form  
 

(1a) 
 
where ηµν = (– 1, 1, . ., 1) is the seven-dimensional Minkowski metric tensor. We have 
 

(1b) 
 
where ri = ri(t) are the cosmic scale functions on type-I, Ri = Ri(t) are defined on 
type-N, ωi — dxi, ωj(i,j = 1, 2, 3) are time-independent differential forms for the 
Bianchi types I, II, VI0, VII0, VIII and IX (see Kramer et al. 1980). The corresponding 
vacuum field equations to be solved are given by
 

(2a) 
 

(2b) 
 
 
 

(2c)  
 
where ri = ri(t), Ri = Ri(t), hi = (lnri),  Hi = (lnRi) , 3h = Σhi, 3H = ΣΗi, r3 = r1r2r3, 
R3 = R1R2R3, dt = (rR)3 dη, ( ) = d/dt, ( )' = d/dη, ni are the structure constants 
of the various Bianchi types given by
 

 
and i, j, k are in cyclic order. 
The general solutions of Equation (2a) are of the Kasner-type: 
 

(3) 

    

.

D.
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where ri0, ki, k = const. We obtain the following results: 
 

(1) N = I:  
(4a)

 

(4b)
 
This is the seven-dimensional generalization of the Kasner-solution in four dimensions. 
Equation (2b) yields Ri = Ri0 exp (Κiη) and (4a) is obtained by setting pi = ki ⎜ (k + K), 
qi = Ki /(k +K), where ΣΚi = Κ. Our solution (4a) turns out to be identical with the 
IX  IX solution (Tomimatsu & Ishihara 1984) when the spatial curvature terms of the 
right-hand side of (2b) are ineffective, which is characteristic for the original Bianchi 
type-IX mixmaster cosmology. 
 
(2) Ν = II: 
 

(5a) 

(5b) 
(5c) 

(5d) 
 
where R12, R13, p, q, a = const, and Hi = (In Ri )'. We obtain two different kinds of 
solutions: 
 

(i) the general solution with k = 0; 
 
 
 
 
 

(6a) 
 

(ii) the special power-type solution 
 
 
 
 
 
 
 
 
 
 

(6b) 
 
where R2, R3, Ri0, c = const.  

Our solution (6a) is the generalization of the vacuum Bianchi type-II solution in four 
dimensions first given by Taub (1951) (see also Lorenz 1980a). Our solution (6b) obeys 
the relation q1 +1 = q2+ q3, from which it follows that no Kasner conditions are 
satisfied if k ≠ 0.  

We now turn to the spaces I  VI0 and I  VII0. In considering first the LRS case 
(see Ellis & MacCallum 1969) R = R1 = R2, S = R3, the Bianchi type-VII0 model 
reduces to a special Bianchi type-I model. We thus consider only the Bianchi type-VI0  

~~ ~
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space. The corresponding field equations to be solved are
 

(3)  N = VI0: 
 

(ln R2)''  = 0, (7a) 
(ln S2)''  – 4r6 R4 = 0. (7b) 

 
From (7a) we obtain the solution 
 

R2 = exp bη, (8a)
 
where b = const, and (7 b) gives now 
 

(ln S2)” = 4α2 exp2(k + b)η  (8b) 
 
It can be shown that the case k + b = 0 is not compatible with Equation (2c). For 
k + b ≠ 0 it is more convenient to consider Equation (2c) instead of (8b). The field 
equation to be solved is given by  
 

(9) 
 

where H3 = (In S)’, ( ) = d/dη. The solutions can now be easily completed in terms of 
the generalized Ellis-MacCallum (1969) parameter u = r3R2:  
 
 
 
 
 
 

(10) 
where  
 

(11) 
 

By setting ki = 0, a = b = 1, we rediscover the (1 + 3) dimensional solution first given 
by Ellis & MacCallum (1969) (Note that this solution is incorrectly given by Kramer et 
al. 1980; in Ellis & MacCallum (1969) q0 should be replaced by q2).  

We next consider the non-LRS case R1 ≠ R2 ≠ R3. Introducing the new variables 
ui = ui(η) by  
 

(12)  
the corresponding field equations can be decoupled and partially integrated to give 
 

(13a) 

(13b) 

(13c) 
 

where b, η0 = const. and δ = (n ) = – (VI0), δ = 1 (VII0). After solving Equation
(13b)  to give u = ιι(η) the most general Bianchi type-VI0 and type-VII0 solutions would 
arise. We will now show how the solutions can be expressed in terms of a particular form 
of the third Painleve transcendents (Ince 1956). Introducing the time variable ζ by 
 

(14) 

0

2

~
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can transform the system (13) to obtain 
 

(15a)

 

(15b)
 

 
(15c) 

 

 

(15d) 

 

 

 
 
where ( )·= d/C.ζ In the limit k = ki = 0 we rediscover the field equations first given 
by Belinskii & Khalatnikov (1969) (for type-IX) and Lifshitz & Khalatnikov (1970) (for 
type-VIII) and later by Khalatnikov & Pokrovski (1972). The connection with the 
Bianchi type-VI0 and type-VII0 spaces has been first observed by Lorenz-Petzold (1984) 
and independently by Jantzen (1984) (Note that there are some errors in the papers of 
Belinskii & Khalatnikov, Lifshitz & Khalatnikov, and Lorenz-Petzold).

If we put 
 

(16) 
 
Equation (15a) becomes  
 

(17) 
 
This equation is a particular form of the nonlinear equation of second order which 
defines the third Painleve transcendent (Ince 1956). The Bianchi types-VI0, VII0 
solutions are completed by Equations (15b), (15c) and (15d) to give ui  = ui (w(z)). A 
solution of Equation (15a) in terms of elliptic function was given by Khalatnikov & 
Pokrovski (1972). The scale functions ri are given by 
 

(18) 
 

We finally consider the spaces I  VIII and I  IX. By setting R = R1 = R2, S = R3,
g = RS, f = (RV, d = n3, z = S2, the field equations (2a-2c) can be decoupled to give 
 
(4) N = VIII, IX: 
 
(i) k = 0: 

 

(19a) 

(19b) 
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where d τ = gdη, ( )’  = d / dτ, ( )’ =d/dη and
 

(ii) k ≠ 0: 
 

(20a) 
 

(20b)  
 

where ζ = exp (2kη), dζ = 2kζdη, ( )’ = d/dζ. From Equation (19a) we obtain the 
solutions 
 

(21a) 

(21b) 
 

where A = const. It is now an easy matter to solve Equation (19b) to give S = S(τ). The 
results are  
 

 

 

 

(22a)

 

 
 

 

(22b)

where 
 
 
 

Our solutions (22) are the generalizations of the (1 + 3)-dimensional vacuum 
solutions first given by Taub (1951) (only the type-IX solution was given explicitly by 
Taub; for type-VIII see Lorenz 1980b). No such explicit solutions are possible in the 
more general case k ≠ 0. Equation (20a) defines a special kind of a third Painleve 
transcendental function (Ince 1956) f = f(ζ), which also determines z = z(ζ) via 
Equation (20b). 

 
 

3. Conclusions 
 
We have given a complete discussion of the higher-dimensional vacuum Bianchi- 
mixmaster cosmologies of types |R  I  Ν, Ν = I, II, VI0, VII0, VIII, IX. Only the 
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Kasner solution I I (4) was known (Tomimatsu & Ishihara 1984). There is a strong 
influence of the spaces Ν on the Bianchi type-I model and vice versa. This can be seen 
explicitly by our new solutions of types-II (Equation 6b), VI0 (Equations 10, 15), VII0 
(Equation 15), VIII and IX (Equation 20). However, due to the great numbers of 
solutions it remains a problem for the near future to discuss our solutions in adequate 
detail. A next step into some more general cosmologies would be to construct some 
perfect fluid solutions. It is also worth investigating the mixmaster cosmologies of 
type-N  N (besides the IX  IX model of Tomimatsu & Ishihara 1984).
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Abstract. Three supernova remnants (SNR) have been mapped in the 
galaxy M33 with the Very Large Array* (VLA) at 20 cm. The angular 
resolution is ~ 1.3 arcsec or ~ 4 pc at a distance of 600 kpc and the rms noise 
is ~ 0.04 mJy /beam. One of the radio sources shows evidence for a shell 
structure with a size of ~ 15 pc, confirming the SNR nature of this source. The 
second object is extended and may well be a thick-shell SNR of size ~ 12 pc. 
The third object is a small, presumably young SNR with a size of ~ 4 pc. 
 
Key words: supernova remnants, radio observations — external galaxies, 
individual — radio sources, VLA observations  

 
1. Introduction 

 
Radio investigations of conventional supernova remnants (SNR) in nearby galaxies are 
only possible within the local group of galaxies. Extensive investigations of the SMC 
and LMC have recently been completed with the Molonglo Observatory Synthesis 
Telescope (MOST) at 843 MHz with a resolution of ~ 43 arcsec (~ 10 pc) (Mills 1983; 
Mills & Turtle 1984; Mills et al. 1984). In Μ 31 and Μ 33, the radio emission from SNR 
is quite weak. As an example, an intense young galactic SNR such as Tycho (3C 10; 
43 Jy at a distance of ~ 4 kpc) would have a flux density of only ~ 2 mJy at a distance of 
600 kpc corresponding to the distance of Μ 33 (Humphreys 1980). A radio survey of 
Μ 31 SNR using the VLA has been carried out by Dickel et al. (1982), who detected five 
SNR at 20 cm with flux densities in the range 1 to 3.4 mJy. In addition, Dickel & 
D’Odorico (1984) have determined the non-thermal nature of several of the SNR in 
Μ 31 based on 6 cm VLA observations.  

The directed radio observations of Μ 33 SNR began with observations by Goss et al. 
(1980, GEDI) of three of the SNR previously found in an optical survey by D'Odorico, 
Benvenuti & Sabbadin (1978) and confirmed to be SNR by spectroscopic studies of 
Danziger et al. (1979). These three (SN-1, 2, 3) were detected in a 21 cm continuum 
Westerbork Synthesis Radio Telescope (WSRT) map. Two of the objects (SN-2,3) were 
detected at 6 cm with maps made with the partially completed VLA in 1978 (resolution 
 
 
* The Very Large Array of the National Radio Astronomy Observatory is operated by
Associated Universities, Inc., under contract with the National Science Foundation  
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~ 1.5 arcsec and rms noise ~ 0.25 mJy /beam). Based on a more extensive optical 
survey of SNR in Μ 33 by D’Odorico, Dopita & Benvenuti (1980) (19 objects, DDB 
list), D’Odorico, Goss & Dopita (1982, DGD) looked for radio emission from these 
SNR using the WSRT at 21 cm. Five certain and three possible detections were 
reported, including the original three (SN-1, 2, 3). Viallefond et al. (1985) have also 
investigated the radio properties of the faint, extended SNR candidate DDB-1 (size 
~ 18 arcsec); a weak radio source of 0.8 ± 0.3 mJy was detected. Blair & Kirshner 
(1985) have confirmed the SNR nature of this source based on optical spectroscopic 
measurements.  

We have used the VLA in the Α-array at 20 cm with an angular resolution of ~ 1.3 arc 
sec (4 pc) and an rms noise six times more favourable than the 1978 VLA observations. 
Three of the objects studied by GEDI (SN-1 = DDB-7; SN-2 = DDB-8; SN-3 
= DDB-9) were observed.  

The purpose of these observations was to use the highest possible resolution and 
sensitivity to study the radio morphology of these SNR. In particular, these 
observations have revealed a shell structure for one of the SNR, and a possible shell 
structure for a second. 

 
 

2. Observations 
 
The three SNR in Μ 33 were observed on 1983 November 14 during a period of 12 
hours. The observing frequencies were 1465 and 1515 MHz with a total of four 50 MHz 
bands in both senses of circular polarization. The angular resolution was ~ 1.3 arcsec. 
Each object was observed separately since the delay beam of the VLA in the Α-array is 
~ 1 arcmin and the sources have typical separations of 3–4 arcmin. The observing time 
per field ranged from 1.7 to 2.7 hours with rms noises in the range 0.04 to 
0.03 mJy /beam (Table 1). The maps were ‘cleaned’ to correct for distortions due to 
sidelobes. 
 
 

3. Results 
 
The 20 cm maps of the objects DDB-7, 8 and 9 are shown in Figs 1, 2 and 3. In these 
maps 1 mJy/beam corresponds to ~ 330 Κ full beam brightness temperature Fig. 1(a) 
shows the SNR DDB-7 and 1 (b) shows the source D, 40 arcsec to the southwest. Source 
D is probably an extragalactic background source (Israel & van der Kruit 1974; 
Viallefond et al. 1985) as it has no optical counterpart in Μ 33. In addition, the radio 
morphology (Fig. 1b) suggests that it could be an extragalactic double (size ~ 3 arcsec) 
with an unequal flux density ratio between the two radio lobes.

The source parameters are summarized in Table 1. The positions for the extended 
sources refer to the centroid of the emission. The optical sizes in column 8 are taken 
from GEDI, DGD and Viallefond et al. (1985). Very uncertain values are indicated 
by(:).  

The VLA flux densities at 20 cm given in Table 1 are less than the WSRT values at 
21 cm (GEDI) by 3.1 ±1.0 mJy (source D), 0.4 ± 0.3 mJy (DDB-7), 2.9 ± 0.5 mJy 
(DDB-8) and 2.5 ± 0.5 mJy (DDB-9). This difference is probably due to confusion 
problems in the WSRT data. Source D, DDB-7 and DDB-9 are located in the 
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Figure 1. (a) DDB-7 (SN-1) at 20 cm as observed with the VLA in the Α-array. The angular 
resolution is 1.38 arcsec × 1.18 arcsec at a position angle of 78°. The contour units are 0.1, 0.2, 
0.3, 0.4, 0.5 mJy/beam. The rms noise is 0.042 mJy/beam. (b) Source D, to the southwest of 
DDB-7, a probable background source. The beamwidth is the same as for DDB-7 and the 
contour units are 0.2, 0.4, 0.6, 1,2,3,4 mJy/beam. 
 
 
prominent, southern spiral arm of Μ 33 (Viallefond et al. 1985); at these low flux 
density levels ( < 5 mJy), it is difficult to perform a precise separation of source 
emission from spiral arm emission. For DDB-8 the presence of nearby HII emission (see 
below) is a probable cause of confusion. 
 
 

4. Discussion 
 
Two of the detected SNR (DDB-8, 9) are clearly resolved with angular sizes in good 
agreement with the earlier 6 cm VLA observations and in reasonable agreement with 
the optical determinations (GEDI, DGD). 

W. M. Goss & F. Viallefond  
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Figure 2. DDB-8(SN-2) at 20 cm. The beamwidth is 1.5 arcsec × 1.14 arcsec at position angle 
87°. The contour units are – 0.06, 0.06, 0.12, 0.18, 0.24, 0.30, 0.36, 0.42, 0.48 mJy/beam. The rms 
noise is 0.032 mJy/beam. 
 
 

The shell structure for DDB-9 (SN-3) suggested by GEDI is confirmed by the present
data (Fig. 3) and is further evidence that this source is in fact a SNR. The shell size of 
~ 5 arcsec corresponds to a diameter of 15 pc. By comparing with the results of GEDI, 
the rather flat spectral index of 0.2 ± 0.1 (S ∝ v–α) is derived between 6 and 20 cm. 

The object DDB-8 is a radio source with a complex morphology (Fig. 2). This 
morphology could be caused by thick shell structure with a size of ~ 4 arcsec or 12 pc. 
We cannot, however, exclude that some of the radio structure is caused by the crowding 
of several individual sources. D’Odorico, Benvenuti & Sabbadin (1978), DDB, and 
Danziger et al. (1979) remark on the presence of faint HII emission adjacent to DDB-8. 
The total emission from the radio source (above the 4 σ level) in Fig. 2 is 2.9 ± 0.2 mJy 
while the major radio source of flux density ~ 2.5 mJy has a position within 1.5 arcsec 
of the optical position of DDB-8 (DGD) and is thus probably related to the optical 
SNR. The weak emission (flux density ~ 0.4 mJy) 4–5 arcsec to the NW could be 
related to HII emission. Two other sources are also present in the DDB-8 field: 40 arcsec 
to the NW there is a source of 1.0 + 0.3 mJy (Table 1) which coincides with the Η α 
nebula Β 33 (Boulesteix et al. 1974). To the SE of DDB-8 there is an additional source 
(Table 1) which might be related to B1004; however the radio position is ~ 7 arcsec NE 
of the optical position and thus the identification is far from certain. In addition, the 
radio source is compact ( < 1 arcsec) in contrast to the Η α nebula ( ~ 12 arcsec). Thus, 
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Figure 3. DDB-9 (SN-3) at 20 cm. The beamwidth is 1.28 arcsec x 1.15 arcsec at a position 
angle of 98°. The contour units are: – 0.08, 0.08, 0.16, 0.24, 0.32, 0.40, 0.48, 0.56 mJy/beam. The 
rms noise is 0.043 mJy/beam. 
 
 
the WSRT 21 cm observation of DDB-8, which shows an extended source at position 
angle 150°, is affected by confusion arising from nearby HII regions. The spectral index 
of the major source in Fig. 2 can be derived using the 6 cm VLA data from GEDI and 
the 6 cm VLA data described by Viallefond et al. (1985); both results are in good 
agreement and indicate a spectral index between 6 and 20 cm of 0.0 ± 0.15. Thus the 
identification of DDB-8 as a SNR must rest entirely on the optical spectroscopy of 
Danziger et al. (1979), Dopita, D'Odorico & Benvenuti (1980) and Blair & Kirshner 
(1985). 

The SNR DDB-7 is much more compact, with an optical size of 2.5 arcsec (GEDI) or 
< 2.5 arcsec (DGD) and a slightly extended radio source with a deconvolved size of 
1.5 arcsec or 4 pc. This must be a young SNR with a surface brightness at 20 cm, ∑, of 
300 × 10-21 W m-2 Hz sr -1. 

SNR in M 33 are faint radio sources. Even with the full sensitivity of the VLA, 
mapping large numbers of M 33 SNR is difficult. Of the 112 radio sources identified 
with H α nebulosities by Viallefond et al. (1985), only at most nine sources can be 
identified with SNR in the various optical catalogues. Thus a large fraction of the SNR 
have flux densities < 1 mJy and the HII catalogue of Viallefond et al. (1985) does not 
suffer from substantial SNR contamination. It is still clear that optical searches (DDB) 
and spectroscopic follow-up observations (e.g. Dopita, D’Odorico & Benvenuti 1980; 
Blair & Kirshner 1985) are the most efficient method to discover SNR in local group 
galaxies beyond the Magellanic Clouds. Radio observations are, however, useful in 
studying individual objects. 
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Abstract. VLA observations at 2 and 6 cm have been obtained for six
hydrogen-deficient stars R CrB, HD 160641, BD – 9°4395, V348 Sgr, 
MV Sgr and Sgr v Upper limits to the massloss rates have been estimated for
some of these using the upper limits to the radio flux density.
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1. Introduction 
 
Massloss in extreme hydrogen-deficient stars is an important phenomenon in 
understanding their evolution (Renzini 1983; Iben 1984) as well as in understanding the 
physical mechanism responsible for massloss (Hamann, Schönberner & Heber 1982). 
Extreme hydrogen-deficient stars comprise both hot and cool stars as well as variable 
and nonvariables. Hamann, Schönberner & Heber have obtained the rates of massloss 
for three nonvariable hot hydrogen-deficient stars from the profiles of ultraviolet 
resonance lines. They find that the massloss rates are similar to those of normal stars of 
the same luminosity and seem to decrease with increasing radius. However, these 
analyses arc strongly model dependent. The radio detection of free-free emission from 
ionized mass outflows probably provides the most accurate method for the determi- 
nation of massloss rates. Therefore, we have observed a sample of hydrogen deficient 
stars with VLA at 2 and 6 cm. Although we could not detect any radio emission, we 
could set upper limits to the flux density which enabled setting upper limits to the 
massloss rates for some of these objects. 
 
 

2. Observation 
 
The observations of six of the hydrogen deficient stars were obtained with the VLA 
(Napier, Thompson & Ekers 1983) in the A configuration on 12 December 1983. Each 
 
* National Radio Astronomy Observatory’s Very Large Array is operated by Associated Universities Inc.
under contract with National Science Foundation, USA

—
—

—



154 Ν. Κ. Rao, V. R. Venugopal & Α. Patnaik 
 
source was observed in snapshot mode at 6 cm (C-band) and 2 cm (U-band) with a 
bandwidth of 50 MHz in each band. The data were acquired in both AC and BD IFs 
(4835 MHz and 4885 MHz in C-band; 14915 and 14965 MHz in U-band). The data 
from two IFs were combined to make maps. A region of about 1 arcmin × 1 arcmin was 
mapped at 6 cm and 20 arcsec × 20 arcsec at 2 cm. As the positions of the stars were 
known quite accurately the regions searched for detection of radio emission were 
considered adequate. The maps were cleaned and restored using the standard software 
package AIPS. The results are tabulated in Table 1 along with other stellar data.
 

3. Massloss rates 
 
Write & Barlow (1975) and Panagia & Felli (1975) have derived simple relations 
between the rate of massloss Μ and radio flux density Sv at frequency ν when the flow is 
uniform and spherically symmetric with a velocity V∞ independent of radius and time. 
The majority of the radio emission should originate far from the star so that the velocity 
can be approximated by the terminal value and the density is assumed to vary as r–2. 
The Wright & Barlow formulation gives  
 

 
where V∞ the terminal velocity in km s–l, Sv in Jy, ν in Hz, D the distance in kpc. The 
remaining parameters depend on composition, kinetic temperature Τ and ionization 
equilibrium in the radiating gas; µ is the mean atomic weight per nucleon, γ is the 
number of electrons per ion, z is the rms average charge of the ion, and g(v, T) is the 
Gaunt factor (Spitzer 1962). Since spectral analyses of many of these objects indicate 
that their atmospheres are rich in helium (Cottrell & Lambert 1982; Dahari & 
Osterbrock 1984; Drilling et al. 1984), we adopt helium as the major constituent of the 
wind. 
 

3.1. Programme Stars 
 
RCrB: Altenhoff et al. (1976) give an upper limit of 5 mJy at 10·6 GHz from the 
observations obtained in 1973. The present estimate is more sensitive ( < 0.3 mJy at 
5 GHz). We adopt µ = 4, y = l and z = 1. The estimation of terminal velocity of the gas 
is uncertain. The massloss is indicated by the absorption components of Mg II lines of 
– 55 and – 28 km s–1 relative to the stellar absorption spectrum (Rao, Nandy & 
Bappu 1981). However, at the time of light minimum emission linewidths indicate 
expansion velocity of 250 km s–1. If we adopt the terminal velocity as 100 km s–1, then 
the upper limit to the massloss rate of ionized gas is < 7·9 × 10 –7 M

☼
 yr –1. However, 

the presence of low-density circumstellar material is indicated by the presence of 
emission lines of λ3727 of [OII] when the star is faint (> 13 mag). From the infrared 
flux, the massloss rate has been estimated as ~ 10–5 Μ

☼
 yr–1 (Forrest 1974) which is 

far in excess of our upper limit.  
HD 160641: We adopt µ= 4, z = 2 and y= 2 as well as the distance and terminal

velocity from the analysis of Hamann, Schonberner & Heber (1982). The present 
estimate of the massloss rate < 8·9 × 107Μ☼ yr–1 (Table 1) is consistent with their
estimate.  

.
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BD – 9°4395: The terminal velocity again is taken from Hamann, Schönberner & 
Heber, µ = 4, z = 2 and y = 2 have been adopted. The distance is estimated by adopting 
log L*/L☼ = 4.0 ± 0.5 and E(B – V) = 0.31. 

MV Sgr: We adopt µ = 4, z = 1, y = 1. The distance is estimated by adopting Mv = 
– 1 and E(B – V) = 0.5. The terminal velocity is very uncertain, lack of line-shifts in the 
low-resolution IUE spectra gives a velocity < 500 km s–1. The upper limit to the 
massloss rate is quoted in Table 1. The ultraviolet spectra show changes in line strengths 
of Fe II, Al II etc (Rao & Nandy 1982) indicating massloss.

V 348 Sgr: We adopt µ = 4, y = 1 and z = 1. The emission linewidths indicate an 
expansion velocity of ~ 50 km s–1 (Houziaux 1968; Dahari & Osterbrock 1984). If we 
adopt the terminal velocity of ~ 100 km s–1 then Μ    1.8 ×10–6 Μ

☼ yr–1 for the
ionized gas (Table 1). The star is known to be surrounded by an optical nebulosity 
extending to 8–10 arcsec. The distance has been estimated as 2.2 kpc by Rao & Nandy 
(1985) which leads to a N e ~ 2 × 103 cm–3 estimated from nebular Hβ emission and 
which agrees well with the value of N e independently estimated from forbidden lines. 
The analysis of Dahari & Osterbrock (1984) show that the star’s CII emission-line 
region is characterised by T ~ 2 × 104 Κ.  
υ Sgr: This is one of the three known hydrogen-deficient binary stars. It has a 

period of 138 days. The IUE spectrum shows resonance lines due to NV, CIV, SiIV etc. 
strongly in absorption, indicating massloss with a terminal velocity of 700 km s–1 . The 
observational aspects have been discussed by Rao & Venugopal (1985). We adopt 
µ = 4, z = 2, γ  = 2, Te ~ 105 K. The present upper limit to the radio flux density 
indicates a massloss rate   5.4 × 10 –7 Μ

☼ 
yr–1 (Table 1). In the evolution scheme 

proposed by Plavec (1973) and Schönberner & Drilling (1983), the system is supposed 
to have lost or to be losing 4 to 12 M

☼
 from the primary star. The present rate of 

massloss is not sufficient to have reduced the primary to a hydrogen-deficient star 
of 1 M

☼
. Most of the matter must have been lost, to the system already in an earlier 

phase of evolution.  
 
 

4. Discussion 
 
The upper limits to the rate of massloss obtained for HD 160641 and BD – 9° 4395 are in 
agreement with the upper limits 10–7 2 and 10–7 7 Μ

☼ yr–1, respectively, determined 
earlier by Hamann, Schönberner & Heber (1982) from ultraviolet spectral lines.
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Abstract. Photoelectric radial-velocity measurements show that the tenth–
magnitude object HD 110195 is a double-lined spectroscopic binary. It 
consists of two very similar late-G dwarfs in an orbit having high eccentricity 
and a period of 18 days. 
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HD 110195 is a late-type star about 3° following γ  Com, At a Galactic latitude of more
than 87°, it is closer to the Galactic Pole than any spectroscopic binary whose orbit has 
been determined previously, either in this series of papers or elsewhere. It is amongst the 
faintest Henry Draper Catalogue stars in the North Galactic Pole field, being fainter 
than tenth magnitude.  

Two photoelectric determinations have been made of the magnitude of HD 110195: 
Harris & Upgren (1964) found V = 10.14, (B – V) = 0.74, (U – B) = 0.34, whereas 
McClure & Crawford (1971) found V = 10.04, (B – V) = 0.74. The latter authors did 
not comment on the discrepancy between their own determination of the V magnitude 
and the earlier one. The V magnitude derived from Geneva photometry (Rufener 1980) 
is 10.13.  

There is an equally serious discordance between the two MK types to be found in the 
literature: Stock & Wehlau (1956) obtained G3 V, but Woolley et al. (1981) preferred 
G8 V. McClure & Crawford (1971) inferred a type of G9 V from narrow-band 
photometry, but their result is not an actual classification of the spectrum.

HD 110195 is the first binary shown in the present series of papers to be double-lined. 
Its faintness, together with the splitting of the ‘dip’ on radial-velocity traces into two 
nearly equal parts (each, of course, only about half as deep as a single star of the same 
spectral type would give) makes it a difficult object to observe with the Cambridge 
radial-velocity instrument (Griffin 1967). This paper accordingly relies to an unusual 
extent on observations made with the spectrometer (Griffin & Gunn 1974) at the 
Palomar 200-inch telescope, where HD 110195 has been observed as a matter of some 
priority in recent seasons; and observations made with the Dominion Astrophysical 
Observatory instrument (Fletcher et al. 1982) have also been helpful.
 
 
 
* Guest Investigator, Palomar Observatory; Visiting Observer, Dominion Astrophysical Observatory,
 Victoria 
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A recent Palomar radial-velocity trace, illustrating the double-lined nature of
HD 110195 at a time when the components of the binary exhibited a mutual difference 
of velocity of more than 100 km s–1, is shown in Fig. 1. There is seen to be a difference 
of about 10 per cent between the depths of the two dips. Within observational error, 
such an inequality is shown by all Palomar traces of the object, its mean value being 12.7 
± 1.6 per cent. The difference is sufficient to permit unambiguous identification of the 
respective components from Palomar traces; but the same is not true of traces obtained 
at Cambridge or the DAO, for which the component assignments often had to be made 
retrospectively after the orbital period was discovered. Because the intrinsic depth of 
the dip increases towards later spectral types throughout the G-dwarf sequence, the 
difference in luminosity of the components of HD 110195 (in the wavelength range 
used by the radial-velocity spectrometers, ~ B) is somewhat greater than the difference 
in dip depths; it may be estimated at 16 per cent or 0.16 mag, and corresponds (Allen 
1973) to a difference in spectral type of rather less than one sub-class. The sum of the 
absolute depths of the dips is consonant with the depth expected for a late-G dwarf but 
(like the broad-band colour indices) is too great to correspond to the type of G3 V 
favoured by Stock & Wehlau.  

There is one measurement of the radial velocity of HD 110195 in the literature, made 
photographically in 1970 by Woolley et al. (1981) at Kottamia. The dispersion 
(66 Å mm–1) was too small to resolve the components, and the velocity obtained was 
close to the γ-velocity derived below. The first photoelectric observation was made at 
Cambridge in 1973; unfortunately it was at a phase when the two dips in the trace were 
juxtaposed but not superposed, and the double-lined nature of the object was not 
recognized although it did confuse the measurement of the trace. The discovery of the 
double lines was made when HD 110195 was next observed, at Palomar in 1978. 
Altogether 12 Palomar observations have now been made, and 12 Cambridge and 
4 DAO measurements at times when the traces were not seriously compromised by 
juxtaposition or blending of the dips. All the radial velocities are collected in Table 1.

In other papers, in the present series no special weighting has been accorded to 
Palomar observations, notwithstanding that they are normally more accurate than 
Cambridge ones. The ideas behind this policy are (a) to avoid the attribution of a great 
 

 
Figure 1. Palomar radial-velocity trace of HD 110195, observed on 1984 December 2. The 
points represent the photon counts in a set of independent ‘bins’ corresponding to a uniformly 
spaced set of longitudinal displacements of a specially constructed mask upon which the stellar 
spectrum is focussed. A more complete description of the equipment and procedure is given by 
Griffin & Gunn (1974).  
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Table 1. Photoelectric radial-velocity measurements of HD 110195. 

 
*  Observatory code: 

C = Cambridge 36-inch telescope (Griffin 1967) 
Ρ = Palomar 200-inch telescope (Griffin & Gunn 1974) 
V = Dominion Astrophysical Observatory 48-inch telescope (Fletcher et al. 1982)  

† Blended dips. Not used in orbital solution.  
‡ Blended dips, but on Palomar trace can be split (Griffin 1982) Used in solution with weight 1.
§  Closely juxtaposed dips; attempts to read both velocities From them were manifestly unsuccessful, and the
 results have been rejected. 
 
  
deal of weight to just a very few isolated observations, and (b) since there are so few
Palomar observations their weighting will not make much difference to the orbital 
solution anyway. A different attitude seems to be called for in the case of HD 110195, 
where the two principal sources have provided similar numbers of observations of 
manifestly different quality, the Palomar ones being perfectly satisfactory whereas the 
Cambridge ones are mostly rather marginal. In principle the proper weighting should 
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be determined by the orbital solution itself, through successive iterations; but it is 
difficult to apply such a principle in the present case, where the result hinges upon the 
retention or rejection of one particular observation whose seemingly ‘wild’ residuals 
provide two-thirds of the total variance of all the Palomar measurements. In other cases 
where Cambridge observations have been obtained only with difficulty (e.g. Griffin et 
al. 1985), weights of Palomar 4, Cambridge 1 have been found to do reasonable justice 
to the respective sources, and those weights are adopted here. Then, on the proper basis 
of the orbital residuals, Victoria measures have been given the same weight as 
Cambridge ones, and all observations of the secondary have had their weights 
multiplied by 0.6.  

The final orbital solution derived from the data given in Table 1 on the basis of the 
adopted weighting is illustrated in Fig. 2 and has the following elements:
 

 

R.m.s. residual (unit weight) = 1.7 km s–1 

 
The HD 110195 system is very reminiscent of the Hyades binary system van Bueren 

117 (Griffin & Gunn 1978) in the nature of the components, the period and the high 
 

 
Figure 2. The computed radial-velocity curve for HD 110195, with the measured radial 
velocities plotted. Palomar observations are plotted as squares, Cambridge as circles and Victoria 
as triangles. Open symbols indicate observations not used in the orbital solution.

R. F. Griffin 
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eccentricity. Van Bueren 117 exhibits BY Dra variability with a period considerably 
shorter than the orbital period (Bopp, Noah & Klimke 1980), and it would now be of 
interest to know whether HD 110195 is also a BY Dra variable. The discordance of 
0.10 mag between the two published photoelectric V magnitudes (Harris & Upgren 
1964; McClure & Crawford 1971) might well encourage that interest; on the other hand, 
the somewhat earlier spectral type and longer orbital period of HD 110195 reduce the 
a priori likelihood that that object is a BY Dra system. Moreover, the radial-velocity 
traces of HD 110195 show little rotational broadening; the minimum equatorial 
velocity of 5 km s–1 which has been repeatedly suggested (e.g. Bopp, Noah & Klimke 
1980) as a necessary condition for BY Dra variability is close to the upper limit of the 
rotation that is compatible with traces such as that shown in Fig. 1.

The values of m1, sin3 i and m2 sin3 i derived from the orbital elements suggest that 
0.90 < sin i < 0.95, corresponding approximately to 64° < i < 72° . It is therefore 
unlikely that HD 110195 will be found to exhibit eclipses, which would only take place 
if i     84°.  

A disconcerting feature of Table 1 is the unacceptable residuals, for both 
components, shown by the Palomar observation of 1978 May 23. They are far too large 
to be understood as random errors, and adjacent observations of other stars confirm 
their systematic correctness. The question arises as to how they are to be regarded. To 
accept the corresponding observation fully would be to imply that HD 110195 has a 
variable y-velocity and is therefore a triple system; the author is not prepared to do that 
on the basis of one observation, although it is true that that is the only way in which the 
1978 observation can be reconciled with the others. To reject the observation without 
any better reason than discomfiture over its residuals would be too arbitrary. To retain 
it in the solution, where it does not seem to belong— it contributes more than a third to 
the sum of the (weighted) squares of the deviations of all the observations—is perhaps 
equally unsatisfactory; but there is some justice in its causing the solution to be less 
certain than would otherwise be the case, and that is the course that has been followed 
here. The possibility of variation in the γ-velocity, like that of photometric variability, is 
one that warrants investigation in the future.
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Abstract. Changes in the radii of neutron stars due to variations in core 
temperature are studied qualitatively in a simple model. The resulting 
irregular changes in pulsar periods are compared with observed values. For 
the millisecond pulsar PSR 1937 + 214 the random changes in period due to 
temperature variation is estimated to be of the order of 10–14 s yr–1 which is 
two orders of magnitude smaller than the steady variation due to loss of 
energy by radiation. 
 
Key words: Pulsars, period variations—neutron stars, cooling—stars,
interiors 
 
 

1. Introduction 
 
Three classes of period variations have been observed in pulsars: steady secular changes, 
unpredictable period discontinuities, and small random fluctuations (Manchester & 
Taylor 1977), The experimental results of Boynton et al. (1972) suggest that random 
fluctuations in pulsar periods can be described as a random walk in frequency. This 
implies random changes in the stellar moment of inertia. Several possible mechanisms 
have been suggested (see Manchester & Taylor 1977 and references therein). In 
particular, Greenstein (1979) proposes that a heat pulse would slow down the neutron 
star interior, and spin up the crust. We investigate here a somewhat different 
mechanism of period variations induced by changes in temperature: the temperature 
variations produce small changes in radius, which in turn produce changes in the 
pulsation period. We make here a qualitative estimate of the random fluctuations in 
period caused by variations in the temperature. 
 
 

2. The model 
 
The structure of neutron stars is governed by the Tolman-Oppenheimer-Volkoff 
equation (Baym, Pethick & Sutherland 1971) 
 

(1) 
 
 

(2) 
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Where P(r) is the pressure, m(r) is the mass within the radius r, and    (r) is the energy
density. Here, and in what follows, we set G = c = h =1. Assuming adiabatic 
condition, the neutron number density n is related to p by (Misner, Thorne & Wheeler 
1973)  
 

(3) 
 

The core of the neutron star is assumed to be spherical with uniform energy density. 
It is also assumed to be isothermal and we ignore the crust. Under these assumptions, 
Equations (1) and (2) could be easily solved to give the radius
 
 

(4) 
 
where P is the pressure at the centre.  

The equation of state is found in the temperature dependent Hartree-Fock 
approximation with the Skyrme interaction. We use the SII set (Vautherin & Brink 
1971) with the following parameters: t0 = – 1169.9 MeV fm2, t1 = 586.6 MeV fm5, 
t2 = 0.27 MeV fm5, and x0 = 0.34. The three-body term does not contribute to the 
energy of neutron matter. A modified form of the density dependence could contribute, 
but we ignore it here. The effective mass m* and the single particle potential v are given 
by  
 

(5) 
 
 

(6) 
 
 

where n and τ are the number and kinetic energy densities at a given distance from the 
centre. The entropy S per unit volume is calculated from
 

(7)
 
with 
 

(8)
 
and µ is the chemical potential, KB is the Boltzman’s constant and K is the magnitude of 
the neutron momentum in units of h. The total energy per unit volume is then evaluated 
as  
 

(9) 
 
 
and the pressure (P = TS – E + µn) is given by 
 

(10)
 
 
Where 

ρ 

(11)
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and  (12) 
 

 
with  
 
When η is large (as is the case here), the above Fermi-integrals could be evaluated by the 
Sommerfeld approximation (Landau & Lifshitz 1958) as
 

(13) 
 
 

(14) 
 
Thus, we have  
 

(15) 
 
This, together with Equation (4), gives us the explicit temperature dependence of R.

Using the fact that pR3 is a constant, we find the change in R due to a change in T, the 
temperature of the star, as  
 
 
 

(16) 
 
 
where R and T are the time derivatives of R and T respectively.  

Assuming that the moment of inertia of the rotating neutron star is proportional to 
R2, the angular momentum conservation gives us 
 

(17) 
 
where P1 is the pulsation period and ω is the angular frequency; superscript dots 
indicate corresponding time derivatives.
 
 

3. Results 
 
We now make a few numerical estimates of the change in radius. Calculations are 
carried out for two values of density. The computed values of radius, mass and R/TT are 
enumerated in Table 1. In what follows we use the 1 M

☼ results for illustrative purposes. 
According to observational upper limits from the Einstein observatory, the surface 

temperature of younger neutron stars (103 yr old) is 3 × 106 K (Tsuruta 1980, 1981; 
Nomoto & Tsuruta 1981). The corresponding interior temperature is 109 K and the 
rate of cooling 105 K yr–1 (Tsuruta 1979). In addition to normal cooling, some heating 
mechanisms are also thought to be at work in neutron stars (Tsuruta 1979). In the case 
of radio pulsars, accretion of positrons, friction between crust and core, plastic flows 
etc. are the possible heating mechanisms. There is observational evidence that older 
radio pulsars are heated to almost 106 K (Helfand 1981). Since there is heating as well as 
 

. . .

. .
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Table 1. Temperature dependent changes in the radius of 
a neutron star. 

 
 
 
 
 
cooling, the star may reach a steady state. The rate of cooling at this surface temperature 
is 105 K yr–1 (Tsuruta 1974) which would equal the rate of heating at steady state. In
order to arrive at some order-of-magnitude estimates, we will assume in the following 
that there exist irregular fluctuations of the order 105 K yr–1

 
in the core, though we do

not have any observational evidence for this number.  
  For the Crab pulsar, ω = 2 × 102 s–1. Taking T = 109 K, T = 105 K yr–1 = 103 K
day–1, we find the magnitude of the possible change in ω in one day as 10–10 s–1. In
the case of older radio pulsars, surface temperature is 106 K. Taking ω = 10 s–1,
T= 108 K and T  = 103 K day–1, we find the magnitude of the change in ω in one 
day as 10–12 s–1.  

Analysis of Crab pulsar arrival times by Boynton et al. (1972) shows that the data are
consistent with frequency noise, i.e., a random series of frequency jumps with R 〈 Δω2 〉 
     4 × 10–21 s–3, where R is the rate at which frequency jumps occur and 〈 Δω2 〉 is 
their variance. Since individual frequency jumps are not resolved with daily observa- 
tions R    10–4 s–1 and hence rms size of frequency jumps 〈 Δω2 〉1/2    6 × 10–9 s–1 
Groth (1975), using a more sophisticated procedure, found 〈 Δω2 〉1/2    5 × 10–9 s–1 
These values are to be compared with our result of ~ 10 –10 s–1. 

For older pulsars of longer period, Manchester & Taylor (1974) find that 〈 Δω2 〉1/2
  

     4 × 10–12
 
s–1, which is of the same order as that of our result. For the millisecond 

pulsar PSR 1937 + 214, friction between crust and core could be a major heating 
mechanism (Backer, Kulkarni & Taylor 1983). If rotation is sufficiently fast, heating 
mechanisms can keep the surface temperature around 106 K even if the object is old 
(Tsuruta 1979). Taking T= 108 K and T = 105 K yr–1, we find P1   10–14 s yr–1

(ω    10–9 s yr–1). These fluctuations would be superimposed on the steady increase in 
period 3·8× 10–12 s yr–1, due to loss of energy by radiation. 

In the case of binary X-ray pulsars, matter is being accreted from the companion. For 
typical accretion rates, the stellar surface may be heated to temperatures of the order of 
107 K, and the whole star to an average value of 106 K. For T = 108 K, P1 = 1 s 
and T = 105 K yr–1, we find P1    10–12 s yr-1 (ω    10–11 s yr–1). 

In summary, possible temperature variations of ~ 105 K yr–1 in the interior of 
neutron stars could produce daily random frequency variations of the order of 
10–10 s–1 in young pulsars and 10–12 s–1 in older long period pulsars. The observed 
daily random fluctuations in frequency are   5 × 10–9 s–1 and   4 × l0–12 s–1 

respectively. For the millisecond pulsar PSR 1937 + 214, the expected random 
fluctuations in period is two orders of magnitude less than the steady increase due to 
loss of energy by radiation. 
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Abstract. This paper gives a full nonlinear version of Newtonian gravity in 
which the gravitational energy acts as a source of the gravitational field. The 
generalized field equation for the scalar gravitational potential is solved for a
spherically symmetric localized distribution of matter. It is shown that the 
perihelia of orbits of test particles in such a field precess steadily. The effect is, 
however, too small to account for the observed shift in the perihelion of 
planet Mercury. Further, the bending of light in this theory is zero. It is 
suggested that these inadequacies of the quasi-Newtonian framework call for 
more sophisticated approaches to gravity. 
 
Key words: Newtonian gravitation, nonlinear—Lorentz-Invariant gravi- 
tation 

 

1. Introduction 
 
This paper forms a sequel to an earlier paper by Rawal & Narlikar (1982, hereafter 
referred to as Paper I) in which an attempt was made to combine the essentials of special 
relativity with those of Newtonian gravity to construct a scalar Lorentz invariant 
theory of gravity. Paper I was limited to discussing first order effects in which the mass- 
equivalent of gravitational energy acts as a source of the scalar gravitational potential φ. 
Here we generalize the framework to all orders in which the feedback of gravitational 
energy on φ in turn modifies the energy which further modifies φ and so on. We will 
then apply the field equation of the modified theory to study the gravitational effects of 
spherical distributions of matter. As in Paper I, the approach will be Lorentz invariant. 

It will be shown that the above problem can be solved exactly and that the motion of 
a test particle in the field can be applied to study the orbits of planets around the Sun. 
 

2. The field equations 
 
As in Paper I we will begin by formulating the action. We first do so in an iterative 
fashion and later obtain the final answer in a closed form by a self-consistency 
argument. We choose units in which c = 1 and ħ = 1. Thus 
 

(2.1) 
 
has the dimensions of length 
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The zero’th order action is written as 
 

(2.2) 
 

Following the sign-convention of Paper I we have (with φi = δφ/δ xi), 
 
 

(2.3) 
 
where ma is the rest mass of typical particle ‘a’ and dsa the element of its proper time. Tm 

is the trace of the matter energy tensor. δ J (0)/δφ = 0 gives us the zero’th order Lorentz 
invariant Poisson equation 
 

(2.4) 
 

To begin the iteration we must add to Tm. the trace of the energy tensor of the φ field. 
To calculate this energy tensor at any order of iteration we use the procedure outlined 
below (for a rationale, see, for example, Landau & Lifshitz 1975). 

Given the action in flat spacetime as J, write it covariantly in a Riemannian spacetime 
with the flat spacetime metric ηik replaced by gik (i, k = 0, 1, 2, 3; 0 timelike) and ordinary 
derivatives by covariant derivatives. Then consider the variation gik → gik + δ gik . 
suppose that 
 

(2.5) 
 

Then T ik is the required energy tensor. It can then be written down for flat spacetime. 
For the φ-field using J (0) in place of J above we get 

 
(2.6) 

 
Therefore to Tm we must add
 

(2.7) 
 

However, addition of Tφ to Tm. in the interaction term J int
 further modifies T ik by our 

prescription (2.5). This is where the iteration begins. So we write the complete action as
 

(2.8) 
 

where Jm is unchanged but 
 

(2.9) 
 
Here the term L(n) arises from the interaction term: 
 

(2.10) 
 
where T(n-1) is obtained from L(n-1) by the prescription (2.5) 

The following ansatz gives us the iterative solution. Write 
 

(2.11) 
 

This gives us from (2.5) 
(2.12) 

But from (2.10) we get 
 

(2.13) 

φ 

φ 
0
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Therefore 
 
 
 

(2.14) 
Thus we get 
 

(2.15) 
 

The situation is actually more complicated than we have so far anticipated; for there 
is another iteration involved! Consider J int

 . It can be expressed in the form 
 

(2.16) 
 

When we apply (2.5) to the above action, it yields additional contribution to Τφ : 
 

(2.17) 
 
which gives the additional contribution as – φTm . This generates further terms  
+ φ 2Tm ,– φ 3Tm etc. in the same manner as obtained earlier for Jφ . Therefore we get on 
summation 
 

(2.18) 
 

Putting all three terms of (2.8) together we get  
 

(2.19) 
 
as the complete nonlinear action. 

It is possible to derive this expression by a short-cut route using the consistency 
argument. Let J be written in the form 
 
 

(2.20) 
 
where the three terms are respectively Jφ , Jint and Jm . Then from (2.5) we get 
 

(2.21) 
 
Now rewrite (2.20) in the form 
 

(2.22) 
 
A variation of φ in this action can lead to a Poisson-type equation if Τφ  in the second 
term is kept unchanged like Tm. With this interpretation (2.20) may be equated to (2.22) 
 

(2.23) 
 
and (2.19) is obtained. 
 

(o)
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This argument illustrates the fact that although Τφ may be looked upon as a source of 
φ in much the same way as Tm, it hides the nonlinearity inherent in the gravitational 
interaction. This nonlinearity is seen in the correct field equation obtained from δ J = 0 
by a free variation of φ: 
 

(2.24) 
 

This generalized Poisson equation is simplified by the transformation 
 

(2.25) 
 
to the form 
 

(2.26) 
 
 

3. Spherically symmetric potential 
 
To solve (2.26) in the empty spacetime outside a spherical distribution is easy. Since 
Tm= 0 we get the solution as 
 

(3.1) 
 
where A, Β are arbitrary constants. 

The potential f is then given by 
 

(3.2) 
 
If we assume that the matter is localized and at large r there is no ‘cosmological’ 
contribution to φ then a comparison with the Newtonian theory in the ‘weak field 
approximation at large r’ gives 
 

(3.3) 
 

Restoring G, c, ħ to the cgs units we therefore get 
 

(3.4) 
 

 

A word of caution is needed here. As we shall shortly show, the constants A and Β are 
not so trivial in the present nonlinear theory as they are in the linear Newtonian theory. 
This is seen by considering the equations of motion of a test particle ‘a’. 

The variational principle δ J/δsa = 0 gives the equations of motion of ‘a’. Writing r as 
the position vector of ‘a’, we get the ‘energy integral’ as 
 

k = constant. (3.5) 
 
Here r denotes the velocity of the test particle in the rest frame of the source 
distribution. The appearance of the (1 + φ)2 term in the denominator underscores the 
need for fixing A and Β unambiguously. 

Consider for example the effect of A and Β on the precession of the perihelion of a 
planet around the Sun. A straightforward calculation gives the answer for the rate of 

.



Nonlinear Newtonian gravitation. II. 175
 
precession of the perihelion as 
 

(3.6) 

 
where ωE is the Einstein value for the precession rate in general relativity. In (3.6) we 
have already fixed Β by the requirement AB = GM, Μ being the mass of the Sun. 

Thus for A = 1 and the potential (3.4) we get a retardation of perihelion. This result 
corrects the earlier erroneous conclusion of Paper I based on only the first term of the 
iterative process. However, we also see that if asymptotic conditions at infinity require 
Α ≠ 1 then a different value of the perihelion precession is found. 

R. Nityananda & A. Samuel (1984, private communication) have pointed out that 
there is no bending of light in a coupling of the type φ Τm since for photons (or for 
electromagnetic fields in general) Tm = 0. An analysis of particle trajectories with non- 
zero restmass but with | r |   c at infinity also shows that as the relativistic parameter 
 

(3.7) 
 
tends to infinity the bending angle drops off as γ–2. 
 

4. Conclusion 
 
The preceding sections describe a logically complete and mathematically consistent 
theory of gravity. However, this theory cannot claim to have anything to do with reality 
because it fails to explain correctly (i) the bending of light and (ii) the precession of 
planetary orbits. Nevertheless the above exercise has the advantage in that it 
demonstrates the need for a more sophisticated theory, as a generalization of the 
Newtonian law of gravitation. In view of the fact that the next possible generalization of 
the Newtonian concept of matter density is to the second rank tensor Tik , we expect the 
theory to be a tensorial one. Whether such a theory, satisfying the present observational 
tests can be constructed within a flat spacetime, is currently under investigation. If such 
a theory also fails we have a strong reason why general relativity, a tensorial theory in
curved spacetime is needed to describe gravity. 
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Abstract. A survey of the Η 272α recombination line at 325 MHz has been
made towards 53 directions in the galactic plane using the Ooty Radio 
Telescope (ORT). 34 of these directions correspond to well-known HII 
regions, 12 to SNRs and 6 to ‘blank’ areas selected so that the 5 GHz con- 
tinuum is a minimum over the telescope beam of 2° × 6 arcmin. Observing 
procedure and spectra of 47 sources towards which lines are detected are 
presented. Hydrogen recombination lines have been detected towards all the 
observed directions having l < 40°. Carbon recombination lines are identified 
in 12 of the directions. The hydrogen line intensities are found to correlate 
well with the total continuum intensity (which includes the nonthermal 
galactic background) indicating that most of the lines arise due to stimulated 
emission by the background radiation. A preliminary discussion on the 
nature of the line-emitting regions is also presented. 
 
Key words: Galaxy, radio recombination lines—radio observations, low- 
frequency—stimulated emission 

 
 

1. Introduction 
 
In a heterogeneous medium, recombination line observations at different frequencies 
sample conditions in different components of the ionized gas (Brocklehurst & Seaton 
1972; Brown, Lockman & Knapp 1978). In particular, recombination line emission at 
low frequencies (< 1 GHz) is expected to be dominated by low-density ionized gas and 
those at high frequencies by high-density gas typical of HII regions prominent in most 
radio continuum surveys (e. g. Altenhoff et al. 1978). This is because at low frequencies 
line emission from high density gas is expected to be suppressed by opacity and pressure 
broadening. On the other hand, recombination line emission from low-density ionized 
gas is expected to be enhanced at low frequencies due to stimulated emission. 
Calculations by Shaver (1975) have shown that at frequencies below 500 MHz 
stimulated emission from low-density regions can be important due to the presence of 
strong background continuum sources or even the nonthermal galactic background. At 
these frequencies, particularly strong lines can be expected from cold, partially ionized 
gas. Fortuitously, it is at these frequencies that both nonthermal sources and the 
galactic background are most intense. It appears therefore that frequencies below 
500 MHz are best suited to study the conditions in cold partially ionized gas (provided 
the ionization is adequate) and in large low-density ionized regions for which beam
dilutions are not important. 
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Most existing largescale recombination line surveys of the Galaxy have been carried 
out at frequencies higher than 1 GHz (see Wilson 1980 and references therein). Below 
500 MHz there are only a handful of observations made towards a few selected sources 
in the galactic plane (see Pedlar & Davies 1980 and references therein). Weak 
centimetric wavelength recombination lines have been detected at several positions 
along the galactic ridge (at l   40°) apparently free of discrete continuum sources 
(Gottesman & Gordon 1970; Gordon & Cato 1972; Matthews, Pedlar & Davies 1973; 
Jackson & Kerr 1975; Lockman 1976; Hart & Pedlar 1976). There are no comparable 
observations of these lines at frequencies below 500 MHz. The only attempt at a large- 
scale survey for such lines along the galactic ridge was done at 408 MHz (Batty 1976), 
but with very low sensitivity and which consequently did not detect any lines. 

In this paper we present a survey of the Η 272α recombination line (324.99 MHz) 
made towards 53 directions in the galactic plane using the Ooty Radio Telescope. In the 
next section we discuss the observing frequency and the source positions. In Section 3 
we describe the equipment and observing procedure. The results of the survey and 
a comparison with existing low-frequency observations are presented in Sections 4 and 5. 
A preliminary discussion on the origin of these lines is presented in the final section. 
 
 

2. Observing frequency and source positions 
 
The rest frequency of the Η 272α recombination line falls at 324.9915 MHz. A 
knowledge of this frequency alone allows us to put constraints on the density and 
emission measure of the ionized gas sampled by these observations. At this frequency 
the continuum optical depth of the ionized gas exceeds unity and the lines merge with 
the continuum when the emission measure exceeds 1.15 × T 1 35 pc cm–6, where Te is 
the electron temperature. For an electron temperature of 8000 Κ and a path length of 
about 100 pc this condition is satisfied for densities Ne > 50 cm–3. Further, at this 
frequency, pressure broadening which is independent of pathlength and virtually 
independent of temperature (Griem 1967; Brocklehurst & Leeman 1971) considerably 
weakens the line intensities for Ne > 50 c m –3. The brightness temperature of the 
nonthermal galactic background is about 600 Κ at this frequency and can be expected 
to enhance the recombination line intensities by stimulated emission in ionized gas if 
the density is less than a few tens cm–3 (Shaver 1975). 

The source positions for these observations were selected from the galactic plane
continuum surveys of Shaver & Goss (1970a) and Altenhoff et al. (1978). Most of the 
positions selected are in the first quadrant of the Galaxy. The galactic longitude l  is
restricted to < 60° due to the limited declination coverage of the Ooty Radio Telescope 

Due to the long integration times necessary for detecting recombination lines at this 
frequency, a complete coverage of all the sources in the plane would require an 
impractical amount of telescope time. Directions were therefore selected at somewhat 
coarser angular intervals, but chosen so as to provide a variety of physical conditions in 
which to study the recombination lines. The directions selected for observations can be 
classified into three types. 
 
1. Η II regions: 34 directions corresponding to well-known HII regions of different
densities and temperatures as determined by high frequency studies (e. g. Shaver & Goss
 

δ (–30° <   < 30°).

e
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1970b). For reasons discussed above, the higher density HII regions are unlikely to 
produce detectable recombination lines at these frequencies. However, these observa- 
tions can sample conditions in either low-density outer envelopes of these HII regions 
or low-density ionized gas which happens to be present along the line of sight. 
 
2. Supernova remnants: 12 directions corresponding to well-known strong SNRs in 
the galactic plane. These directions are particularly suited for studying the effect of 
stimulated emission at low frequencies due to the strong background continuum 
source. There is ample evidence for the existence of substantial amounts of ionized gas 
along the line of sight to these sources. For example, a turnover in their continuum 
spectra at low frequencies has been observed (Dulk & Slee 1975). In addition, high- 
frequency recombination lines have been detected towards a few of these sources (e. g. 
Downes & Wilson 1974). 
 
3. Blank regions: The high-resolution continuum map at 5 GHz by Altenhoff et al. 
(1978) was used to select six regions in the galactic plane devoid of any strong discrete 
source within the beam used for these observations. Observations in these directions 
are expected to provide complementary information to the galactic ridge recombi- 
nation lines detected at centimetric wavelengths as mentioned above. 
 

For comparison purposes a few positions were also selected in the anticentre
direction where the nonthermal background is considerably weaker. Table 1 gives all 
the observed source positions in galactic and equatorial coordinates. Well-known 
names of the sources, where available, are indicated in column 4. The nature of the 
source in the direction of observation is given in column 5. 

The high density of sources in the galactic plane introduces confusion. In some of the 
directions chosen above, the 2° × 6 arcmin beam intercepts more than one source. 
Arguments such as comparison of velocities with measurements at higher frequencies 
with better angular resolution should be used to identify the source of an observed line. 
 
 

3. Equipment, observing procedure and data reduction 
 
Observations were made using the 530 m × 30 m Ooty Radio Telescope (ORT) (see 
Swarup et al. 1971 for a detailed description). Since these are the first major spectral line 
observations carried out with the ORT, we describe in some detail below the 
equipment, observing procedure and the difficulties encountered in using such a
phased-array telescope for line studies. We begin with a brief description of the ORT.

The ORT operates at a nominal centre frequency of 326.5 MHz and has an angular
resolution of 2° in RA and 5.6 sec δ arcmin in declination. The telescope is equatorially
mounted and mechanically steerable to track a source continuously for about 9 hours, a
feature particularly suited for these observations since long integration times are
required. The beam is steered in declination using phase shifters at RF of 326.5 MHz 
and delays and phase shifters at an IF of 30 MHz (Sarma et al. 1975). With the new RF 
amplifiers and phase shifters installed recently, the system temperature at the input of 
the RF amplifier is now about 300 Κ when the antenna is pointed towards a cold region 
in the sky. A source of 1 Jy in the beam of the antenna produces an increase of about
1.8 K in this system temperature.

The back-end is a 128 channel one-bit autocorrelator which can analyse total
bandwidths of 500 kHz, 250 kHz and 125 kHz. After Hanning smoothing of the
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autocorrelation function, these bands can provide frequency resolutions of 7.8 kHz, 
3.9 kHz and 2.0 kHz respectively. Any required frequency band at the RF can be 
placed in the autocorrelator band by changing the frequency of a synthesizer used as the 
first local oscillator (FLO).

Observations were made in the total power mode in several sessions during the 
period from August 1980 to May 1982. During this period the ORT was undergoing 
several modifications in its front-end system. Therefore some of the observations were 
made with some sections of the telescope missing, and sometimes with slightly different 
sensitivity. Column 6 of Table 1 indicates the configuration of the telescope during the 
different observations. However during all the observing sessions the line intensities 
were measured with respect to the adjacent continuum, which to first order removes the 
dependence on system parameters. A bandwidth of 500 kHz (which corresponds to 
~ 461 km s–1 at the Η 272α frequency) was used during all the observations providing 
a velocity resolution of 7.2 km s–1. Double frequency switching was employed for all 
the observations; the FLO was switched between the line frequency (ON) and two 
reference frequencies (REF1, REF2), one on either side in the sequence ON-REF1-ON- 
REF2-ON-etc, spending 0.25 seconds at each frequency. Depending on the direction of 
observation, the line frequency was chosen such that the expected LSR velocity of 
hydrogen and carbon 272α lines fell within the observing band.

The different frequency settings of the FLO and switching between them which is
necessary for these observations, introduces many complications in the performance of 
the antenna and the receiver. When the frequency of the FLO is changed from the 
nominal setting of 296.5 MHz by an amount Δf, the north-south pointing of the
antenna changes by an amount Δδ = (Δf/f) tan δ, where f is the nominal RF centre
frequency (326.5 MHz) of the system. Therefore, when the central frequency of 
observation is changed from the nominal setting (for example to the Η 272α frequency) 
a set of systematic phase corrections have to be applied in order to point the antenna in 
the desired direction. We find that a change in the centre frequency also decreases the 
sensitivity of the system; the sensitivity drops by about 20 per cent at the frequency of 
the Η 272α line. This may be partly due to problems in applying phase corrections in the 
system.

A further complication is introduced when the FLO is switched between the line and 
reference frequency. The corresponding beamshift produces a change in the total 
system temperature whose magnitude depends on the strength, size and angular 
distribution of the source being observed. A mere change in the total system 
temperature, which only introduces a change in the input signal level, does not change 
the response of a one-bit correlator. However, this change in the system temperature is 
really a function of frequency even within the bandwidth of 500 kHz. This produces a 
curved baseline in the final spectrum obtained by subtracting the line and reference 
band shapes and dividing by the reference band shape. The curvature of the baseline is 
therefore a function of the continuum distribution of the source being observed. This 
being so, we cannot use observations towards a reference region to remove the 
instrumental baseline as is done in many single-dish spectral-line observations. We were 
able to minimize the baseline curvature by using double frequency switching as 
described above. We tried to reduce the curvature further by also switching in phase 
corrections, as mentioned above, corresponding to the line and reference frequencies. 
Phase correction switching considerably reduced the total system temperature
variation but failed to improve the baseline; in fact in some cases the curvature in the
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baseline deteriorated. Several test observations towards a cold region in the sky showed 
that the instrumental baseline introduced only by the frequency response of the RF 
amplifiers is minimal.

In Fig. 1 we show examples of two baselines. SgrA, the strongest source in these
observations, has a sharply peaked continuum distribution and is an example of the
most unfavourable baseline. A fourth-order polynomial has been fitted to channels
devoid of line emission to determine the instrumental baseline. However, the baseline
for most of the sources are intermediate between SgrA and W 41 shown in Fig. 1.
Polynomials up to third order were fitted to determine the baselines in most of the
cases. In a few cases a fourth-order polynomial was necessary.

Each source was observed in three to four sessions either on successive days or 
separated by several days depending on the availability of telescope time. Data were
acquired in stretches of 1 to 1.5 hours while tracking the source position over an hour-
angle range generally between –4h and +4h 30m. Individual scans were combined, after
 
 

 
Figure 1. Observed spectra and the fitted instrumental baseline towards two sources Sgr A and 
W 41. The spectrum in the lower part of both the frames is obtained after subtracting the baseline 
shown as a solid line 
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editing out interference, to form a one day’s spectrum for the source. A one-bit auto- 
correlator only measures a normalized spectrum (Weinreb 1962). At the beginning of 
each day’s observing session the increase in the total system temperature at the source 
position was measured with respect to a region generally about lh.5 to 2h away in right  
ascension. This was used to calibrate each day’s spectrum in terms of the line to 
continuum ratio. These one day spectra for each source were averaged with weighting 
functions proportional to their integration times to obtain the final spectrum for the 
source. Instrumental baselines were fitted and removed from these final spectra as 
described above. For some sources the data were further smoothed to improve the 
signal-to-noise ratio. It was ensured that the smoothing process did not affect any 
narrow feature. For most of the sources, gaussian components were fitted to the line 
profiles using a standard least-square technique and the line parameters were
determined. In Fig. 2 we show an example of a gaussian fit and the residuals after
subtracting the fitted components from the final spectrum. In all the cases, the residuals 
obtained this way showed rms noise fluctuations consistent with that expected for a
one-bit correlator (Weinreb 1962). The source G 359.9 – 0.1 (SgrA) was observed
several times during the one-and-half year period of these observations to monitor the
satisfactory functioning of the system at all times. This resulted in a particularly long
integration time and therefore the best signal-to-noise ratio for this source. 

One of the major difficulties in spectral-line-observations at low frequencies is the 
presence of CW interference. Low-level CW interference from equipment in the 
laboratory, low-level oscillations in one of the RF amp
sions in the communication bands from nearby ground-based transmitters and 

lifiers, harmonics of transmis- 

satellites, can all seriously affect the quality of the data. In fact, for some period during 
 
 

 
Figure 2. An example of a gaussian fit to the final spectrum. The crosses indicate the amplitude
and width (FWHM) of the fitted components. The residuals after removing the gaussians are also
shown. The dotted lines indicate the expected 1σ amplitude of the residuals. 
< 
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these observations, strong interference through the image band of the ORT receiver
(266.5 MHz) was coming from a geostationary satellite. Because of this, after some initial
observations at the Η 271α recombination line frequency (328.6 MHz), we
switched to the Η 272α line at 324.99 MHz. The interference usually manifests itself as 
an increase in the rms noise in the spectra, or as sharp spikes in either one-minute data 
or in the averaged spectrum depending on the strength and duration. The ‘lines’ due to 
interference can generally be easily distinguished from those due to an astronomical 
source by their peakiness and confinement to one or two channels only. In the final 
analysis, all such stretch of data containing this type of interference were deleted. Up to 
30 per cent of the total acquired data had to be discarded due to the presence of such 
interference. We have carefully examined all the individual pieces of data making up the 
final spectrum for each source to ensure that the line emission attributed to an 
astronomical source is not due to the presence of interference in some individual 
stretches of data. Except for the sources W 51B and Orion, we believe that all the data 
presented here are free of interference to a high degree.

Continuum measurements of all the sources observed for recombination lines were
made in a separate session in 1983 April. Even though the observed lines were already
calibrated in terms of line-to-continuum ratios, the continuum measurements were
necessary for interpretation since the total background radiation can cause stimulated
emission of these lines as discussed before. For each of the source positions the increase
in total system temperature was measured with respect to a cold region about 2h.5 to 3h 

away in right ascension. This was compared with the increase in system temperature
due to the sources 3C 283 and Her-Α. The flux density of 3C 283 at 327 MHz was taken 
to be 20.6 Jy and that of Her-Α as 200 Jy. Necessary corrections were applied for the 
deviation of the total power detector characteristic from a true square law. The 
resulting equivalent flux in the beam was converted to average beam brightness 
temperature using the measured main-beam solid angle of the ORT. No attempt was 
made to separate the contributions from the source in the beam and the background. 
The measured beam brightness temperature for each source is given in Column 7 of 
Table 1.
 
 

4. Results
 
Out of the 53 directions observed, recombination lines have been detected in 47 
directions. The observed spectra corresponding to directions in which lines were 
detected are presented in Fig. 3 in which the ratio of line to total underlying continuum 
intensities have been plotted against radial velocity with respect to LSR calculated 
using the rest frequency of the Η 272α recombination line. The line parameters 
obtained from a least-squares gaussian fit to the observed profiles are given in Columns 
2 to 4 of Table 2. Columns 5 and 6 of this table give the velocity resolution of the spectra 
and the integration time respectively. The peak brightness temperature of the line TBL is 
given in Column 7. This was obtained by multiplying the quantity in Column 2 by the 
measured continuum beam brightness temperature for the source indicated in Column 
7 of Table 1. For many of the sources (particularly those with very wide lines), the 
individual line parameters obtained from gaussian fits can only be used as indicators of 
the strength and extent of the line; a single gaussian component may not accurately 
represent the true line shape. A more meaningful parameter would be the integrated 
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line intensity. This quantity computed from the gaussian parameters for each source is
given in Column 8 of Table 2. Possible carbon lines have been excluded when obtaining 
this quantity. The errors quoted in Table 2 are equal to one standard deviation. These 
errors are obtained from the rms noise of the residuals after gaussian fit and using the
formulae relating this noise to the error of the parameters as discussed by Rieu (1969).

The main results of this survey can be summarized as follows. 
 

1. In the first quadrant of the Galaxy, for the longitude range l   40°, hydrogen 
recombination lines were detected towards every direction irrespective of whether it 
corresponded to an HII region or an SNR or a blank region. Outside this range the line 
was detected only towards two strong sources W 49 and W 51. The line was also 
detected towards the three HII regions in the anticentre direction. 

2. The line intensities are typically about 0.1 per cent of the total continuum 
intensity, and required integration times ranging from 10 hours to 30 hours for 
detection with a signal-to-noise ratio between 5 and 10. 

3. There is no marked difference in the line to total continuum intensity ratio 
between directions of HII regions, SNRs and blank regions. 

4. Typical widths of the lines (FWHM) are 20–50 km s–1. However, the spectrum is 
much wider (60–80 km s–1) or has more than one component for many sources, 
particularly those in the longitude range 20° to 30°. The line towards 3C 391 (G 31.9 
+ 0.0) is particularly narrow; the FWHM is only about 11 km s –1 after correction for 
instrumental broadening.

5. The strongest Η 272α line detected is towards the galactic centre. The line profile 
clearly shows three components; one centred at 0 km s–1 one around – 50 km s–1 

and the other at a positive velocity. 
6. Judging by the frequency shift (~ 162 kHz   149 km s–1) with respect to the 

hydrogen line, carbon lines can be identified in about 12 cases. These lines are however 
somewhat wider (20–30 km s–1) than the carbon lines observed at higher frequencies 
(5–15 km s–1).
 
 

5. Comparison with other low-frequency observations 
 
Recombination lines from a few individual sources in this survey have been observed
before by other workers using other telescopes at frequencies below 500 MHz. For
comparison we have selected all those sources in Table 1 which have been observed at 
frequencies close to that of this survey. The frequency of observation, angular 
resolution, observed line parameters and references are given in Table 3. Comparison 
of these parameters with those given in Table 2 for the same sources show that the 
observed line intensities and centroids are in good agreement for most of the sources; 
the slight differences in these quantities could be the result of the very different beam 
sizes employed for the two observations. Some noticeable differences between the two 
sets of observations are described below. 

The width of the line towards the SNR 3C 391 (G31.9 + 0.0) observed at this 
frequency is much smaller than at higher frequencies. On the other hand, the lines 
towards SgrA and Μ 17 are somewhat broader. The observations towards W 5IB at 
325 MHz seem to show additional components at higher velocities. But these 
components have to be treated with, caution since, as noted earlier, observations
towards this source were affected by interference. Further, we have not detected any
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lines towards W 51C and W 51A and our upper limits are somewhat lower than the 
intensities reported by Terzian & Pankonin (1974). Again, some of these differences 
may be due to the different angular resolution, frequency and sensitivity of the two sets 
of observations.
 
 6. Discussion 

 Detailed interpretation of the data presented in this paper in terms of the distribution 
and properties of the gas responsible for the observed lines will appear in subsequent 
publications. Here we discuss only the broad characteristics of the data and their 
implication for the nature of the line-emitting regions. 

 
 6.1 Hydrogen Lines 

 6.1.1  Line Intensities

As discussed earlier, there combination lines observed at this frequency can only sample 
conditions in relatively low-density ionized regions. Macroscopic properties of a large 
selection of HII regions in the galactic plane have been studied by Shaver & Goss 
(1970b). Most of the HII regions common to the present Η 272α recombination line 
survey and the continuum survey of Shaver & Goss (1970b) have electron densities 
greater than 100 cm–3 and angular sizes less than 10 arcmin. With these densities and 
sizes, effects of pressure broadening, optical depth and beam dilution make the
recombination lines at this frequency virtually undetectable from these HII regions. The 
recombination lines measured here must therefore arise from much lower-density gas 
in regions of much larger angular size. The gas can either be associated with the HII 
region, for example as an outer envelope, or just lying along the line of sight. Further, 
the intensity and width of the recombination lines detected in this survey are very 
similar in all directions observed, irrespective of whether the direction corresponds to 
that of an HII region, an SNR or a blank region. The intensities of the lines are found to 
correlate well with the total continuum intensity. In the galactic plane where most of 
these observed sources lie, the continuum radiation at this frequency is mainly 
nonthermal in origin. Therefore, the line and continuum radiation originate in different 
regions along the line of sight. The HII regions and SNRs only add to the background 
continuum radiation, and the lines themselves must arise in low-density ionized regions 
distributed along the line of sight. The ORT beam of 2° × 6 arcmin and the low 
observing frequency are probably well suited for studying the properties of such low- 
density ionized gas not prominent in the continuum. At higher frequencies, where 
better angular resolutions are available and where the expected intensity of recombi- 
nation lines from the HII regions themselves are much higher, it would be difficult to
separate the contribution from lower-density gas.
 
 
6.1.2  Stimulated Emission 
 Stimulated emission of recombination lines due to non-LTE populations of high 
principal quantum number levels is expected to be important at low frequencies
(Shaver 1975). The presence of a strong background source or even the nonthermal
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Figure 4. Correlation of the line temperature with the total continuum temperature which
includes the nonthermal galactic background. The dashed line indicates the least squares fit. 
Correlation coefficient is 0.8. 
 
 
galactic background is expected to have considerable influence on the line intensities 
Pedlar et al. (1978) have demonstrated that the intensity of the low-frequency
recombination line towards the galactic centre is enhanced by the background 
continuum sources in that direction. In Fig. 4 we have plotted the peak line brightness 
temperature TBL, observed in different directions, against the total continuum 
temperature TBC which includes the nonthermal galactic background. There is a good 
correlation between them (correlation coefficient = 0.8) indicating that the line 
intensities are enhanced by the background radiation. It may be noted here that such a 
correlation between line and continuum intensity has been observed even at 5 GHz 
(Jackson & Kerr 1975). But at this frequency the continuum is mainly thermal, and the 
correlation is expected even in the absence of stimulated emission. However, at low 
frequencies (< 500 MHz) the continuum intensity is dominated by the nonthermal 
emission and any correlation between TBL and TBc can only be due to stimulated
emission. 
 

6.1.3  The Line Velocities 
 
The radial velocity with respect to LSR for all the observed lines is given in Column 4 of 
Table 2. The measured radial velocity of an object in the galactic plane is an indicator of 
its location along the line of sight. It is useful to compare the velocity of the Η 272α line 
observed here with that of a higher-frequency recombination line, as the latter arises 
preferentially in the relatively high-density HII regions along the line of sight. Column 
9 of Table 2 gives the velocity of the Η 110α observed by Downes et al. (1980) in the 
same directions. Column 10 is the difference between the observed Η 272α velocity and 
the Η 110α velocity. A histogram of these differences is shown in Fig. 5. These 
differences are an indication of the separation along the line of sight between the HII
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Figure 5. Histogram of the difference between the observed velocity of the Η 272α line and the Η 
110α line in the same direction (see Column 10 of Table 2).  
 
 
regions from which the Η 110α line is observed and the lower-density gas from which 
the Η 272α line is observed. The histogram in Fig. 5 shows that in the 60 per cent of the 
cases the difference in velocity is within 10 km s–1. Within the observational errors 
(which are 2–5 km s–1 for both) the velocities are in good agreement. In any case there 
is always a substantial emission of the Η 272α line at the velocity of the HII region (as 
seen in Η 110α line) in more than 90 per cent of the cases. This clearly suggests that the 
low-density gas responsible for the Η 272α line is associated with the dense HII region in 
that direction. In those cases where the velocity difference is large the two regions must 
be physically widely separated, unless there is differential motion between the higher- 
and lower-density regions.
 

6.1.4 The l–v Diagram 
 
The longitude velocity (l–v) diagram of the lines observed is an indicator of the 
distribution of the gas responsible for the lines in the galactic disc. Fig. 6 is the l–v 
diagram of the Η 272α lines observed in this survey in the range l = 0° to 50°. This can 
be compared with l–v diagram for the 21 cm HI emission in the galactic plane (e.g. 
Lockman 1976). The HI emission occupies a much larger velocity range in such a 
diagram. It is therefore clear that the gas responsible for the low-frequency 
recombination line is not distributed like neutral hydrogen. This rules out the 
possibility that the line emitting regions are partially-ionized neutral-hydrogen clouds. 
This could be because ionization in the cold HI clouds is not adequate to produce 
detectable recombination lines at this frequency. Further, the width of these lines, 
which is in the range of 20–50 km s–1, indicates that these lines do not arise from a
distributed component of the interstellar medium.
 



198 K. R. Anantharamaiah
 

 
Figure 6. Longitude-velocity diagram of the observed Η 272α lines. The extent of the 
horizontal lines indicates the observed half-power width and the dot indicates the centroid of the 
line. 
 

On the other hand the l–v diagram in Fig. 6 is similar to those of HII regions seen in 
the Η 110α survey (see Wilson 1980), the ionized galactic ridge seen in the Η 166α
survey (Lockman 1980), and molecular clouds seen in the CO surveys (Burton &
Gordon 1978). The distributions of both HII regions and molecular clouds in the
galactic disc show a peak between 4 kpc and 8 kpc from the galactic centre (Wilson 
1980; Sanders 1983). While most of the recombination lines observed here do not arise 
in the HII regions seen in the  Η 110α survey, for reasons discussed earlier, the l–v 
diagram in Fig. 6 indicates that the lower-density gas responsible for these lines is 
distributed in a manner similar to HII regions and molecular clouds in the inner part of 
the Galaxy. As the Η 272α recombination line is detected in every direction observed for 
l < 40° representative quantities of low-density ionized gas must be present in every 
direction in this range.
 
 

6.2 Carbon Lines 
 
Recombination lines of carbon are not as widespread as those of hydrogen. They have 
been detected at other frequencies in only 15 to 20 sources . To date these lines have been 
identified as coming from three types of regions. These are, the partially-ionized 
medium adjacent to HII regions (see Pankonin 1980), dark clouds surrounding early B- 
type stars (see Brown 1980) and possibly diffuse neutral hydrogen clouds 
(Konovalenko & Sodin 1981; Anantharamaiah, Erickson & Radhakrishnan 1985). The
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Table 4. Observed parameters of carbon lines. 

* Observation affected by interference. 
 
 
carbon lines therefore arise in predominantly neutral and cool regions in contrast to
hydrogen lines, most of which come from the hot fully-ionized HII regions. 

In the present survey, C 272α line has been tentatively identified in 12 cases. The 
observed parameters are separately given in Table 4. For many of the sources, this is the 
first detection of a carbon line. The observed width of the lines (15–30 km s–1) are 
much larger than those at higher frequencies (see for example Dupree 1974; Parrish & 
Pankonin 1975). If the large line widths are due to pressure broadening then electron 
densities of 50–100 cm–3 are implied for the regions. These in turn imply hydrogen
densities of 2–3 × 105 cm–3, if the cloud has normal interstellar abundance and all the 
carbon atoms are ionized. We note here that Silverglate & Terzian (1978) also report 
widths in excess of 25 km s–1 for carbon lines at 1400 MHz. 

7. Summary

A survey of the Η 272α recombination line has been made towards 53 directions in the 
galactic plane, consisting of 34 HII regions, 12 SNRs and 6 regions where the continuum 
is a minimum. Observed spectra and line parameters of the hydrogen lines detected 
towards 47 directions, and possible carbon lines towards 12 of these directions, are 
presented. 

The Η 272α line is seen in every direction observed with galactic longitude less than 
40°. The line intensities are typically 0.1 per cent of the total continuum and there is no 
marked difference between directions of HII regions, SNRs and blank regions. Typical 
widths of the lines are 20–50 km s–1 but the lines are much wider in the longitude 
range 20° to 30° 

The observed line temperatures show a good correlation with the total continuum 
temperature which is dominated by the nonthermal radiation at this frequency, 
indicating that the line intensities are enhanced by stimulated emission. 

It is argued that these lines are unlikely to arise from typical HII regions (densities
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> 100 cm–3) which are prominent in many radio continuum surveys, due to the effects 
of pressure broadening, optical depth and beam dilution. These lines can arise only 
from much-lower-density gas. Judging from the velocity differences between Η 110α 
lines, observed by Downes et al. (1980), and the present Η 272α lines detected towards 
the same directions, there seems to be a physical association between the higher-density 
HII regions seen in Η 110α and the lower-density gas responsible for the Η 272α lines. 
The l–v diagram for these lines show that the distribution of this low-density gas is 
similar to that of HII regions and molecular clouds in the inner galactic disc, and is 
unlike that of neutral hydrogen which occupies a much larger velocity range. The 
widths of the lines indicate that the gas responsible for them is not a distributed 
component of the interstellar medium. 

The observed widths of the carbon lines at 325 MHz are much larger than those at 
higher frequencies indicating that pressure broadening may have become important. 

A more detailed and quantitative interpretation of the data presented in this paper 
will appear in the following paper (Anantharamaiah 1985). 
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Abstract. The recent survey of H 272α recombination line (324.99 MHz) in
the direction of 34 HII regions, 12 SNRs and 6 regions of continuum 
minimum (‘blank’ regions) in the galactic plane is used to derive the properties 
of diffuse ionized gas in the inner Galaxy. 

The intensity of radio recombination lines at high frequencies is dominated 
by spontaneous emission in high-density gas and that at low frequencies 
(325 MHz) by stimulated emission in low-density gas. We have used this 
property to obtain the electron density in the gas in the direction of blank 
regions and SNRs, by combining the H 272α measurements (preceeding 
paper) with the published data at higher frequencies. Further, we have 
imposed constraints on the electron temperature and pathlength through this 
gas using the observed high-frequency continuum emission, average inter- 
stellar electron density and geometry of the line-emitting regions. The derived 
properties of the gas are (i) electron density 0.5-6 cm–3, (ii) electron 
temperature 3000-8000 K and (iii) emission measures 500-3000 pc cm–6 

The corresponding pathlengths are 50-200 pc. 
As the derived sizes of the low-density regions are small compared to the 

pathlength through the Galaxy, the low-frequency recombination lines 
cannot be considered as coming from a widely distributed component of the 
interstellar medium. 

The HII regions studied in the above survey cannot themselves produce the 
H 272α lines detected towards them because of pressure broadening, optical 
depth, and beam dilution. However, the agreement in velocity of these lines 
with those seen at higher frequencies suggests that the low-frequency 
recombination lines arise in low-density envelopes of the HII regions. 
Assuming that the temperature of the envelopes are similar to those of the 
cores and invoking geometrical considerations we find that these envelopes 
should have electron densities in the range 1–10 cm–3 and linear sizes of
30–300 pc in order to produce the observed H 272α lines.
 
Key words: Galaxy, recombination lines—galactic ridge—interstellar 
medium, electron densities— Hii regions, low density envelopes 
 
 

1. Introduction 
 
Recombination lines observed at low frequencies (< 1 GHz) preferentially sample
conditions in low-density regions whereas those at higher frequencies originate mainly
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in higher-density regions. Several surveys of recombination line emission from the 
galactic plane have been performed at high frequencies (> 1 GHz) (see Wilson 1980
and references therein), and have been used for deducing the properties of the ionized 
regions. Until recently, recombination line observations at low frequencies (and 
therefore from correspondingly lower-density regions) were available towards only a 
few sources in the galactic plane (see Pedlar & Davies 1980 and references therein). 
Some of these observations have been used to deduce the properties of low-density 
regions (e.g. Shaver 1976) and to demonstrate the importance of stimulated emission of 
recombination lines at low frequencies (Pedlar et al. 1978).

Apart from the discrete ionized regions (HII regions) in the galactic plane there is 
evidence for the presence of more widespread lower-density ionized gas in the inner 
Galaxy from what are known as ‘galactic ridge recombination lines’ (Gottesman & 
Gordon 1970; Jackson & Kerr 1975; Lockman 1976; Hart & Pedlar 1976b, and see 
Lockman 1980 and references therein). These lines which have been observed mainly at 
centimetre wavelengths are seen in directions in the galactic plane apparently free of 
discrete continuum sources. There were no low-frequency observations of the ridge 
lines 

Recently, a survey was made of the recombination line emission at 325 MHz towards 
53 directions in the galactic plane consisting of 34 HII regions, 12 SNRs and 6 ‘blank’ 
regions which are free of discrete continuum sources (Anantharamaiah 1985a, hereafter 
referred to as Paper I). In Paper I we have presented the observations and the 
parameters of the H 272α lines detected towards 47 of these directions. A discussion of 
the broad characteristics of the data was also presented in Paper I and it was shown that 
most of the observed lines arise due to stimulated emission in the presence of 
background radiation. In this paper we make use of the observed parameters and derive
the physical properties of the ionized regions responsible for these lines. In Section 2 we 
present some general considerations and a brief summary of the relevant theory of line 
formation. In Section 3 we obtain the properties of the ionized gas observed towards 
blank regions and SNRs, and in Section 4 towards HII regions. A discussion of the 
derived parameters is presented in the final section. 

2. General considerations 
 
The detection of a recombination line in a given direction essentially yields three line 
parameters, the peak line intensity TL, the full line width at half maximum intensity ΔV 
and the line centre velocity VLSR In addition, the average continuum beam brightness 
temperature TBC is also measured in the same direction. VLSR can indicate the distance to 
the source if a model of galactic rotation is used. As the total continuum temperature 
TBC is dominated by the nonthermal galactic background, at this frequency, it is not 
possible to use the ratio of line to continuum temperature to derive the electron 
temperature of the region as usually done at higher frequencies. Further, even the 
thermal part of the continuum is dominated by emission from high-density ionized 
regions whereas the low-frequency recombination lines arise mostly in low-density 
regions (Brown et al. 1978). Therefore, at this frequency only the line intensity TL and 
the width ΔV are directly related to the source parameters. However the total
continuum temperature TBC is an important quantity since it directly affects the line
intensity TL because of stimulated emission (Paper 1).
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To derive or put constraints on the properties of the gas responsible for the observed 
lines, it is thus necessary to combine the line parameters from Paper I with other 
observations pertaining to the same gas. 
 
 

2.1 Theoretical Line Intensities 
 
Theoretical intensities of low-frequency recombination lines have been discussed in 
detail by Shaver (1975). The excess temperature produced at the recombination line 
frequency v by a homogeneous ionized region located in front of a background
continuum source is given by
 
 
 
 
 
 

(1) 
 
 
where T0, is the continuum temperature of the background source, Te the electron
temperature of the ionized region and TN represents the nonthermal background 
distributed inside this region. The continuum optical depth is given by (Oster 1961)
 
 

(2) 
 
where Ne and Ni (cm–3) are the electron and ion densities, L (pc) is the pathlength
through the region and v (GHz) is the frequency. In local thermodynamic equilibrium 
(LTE), the optical depth at the line centre (for α-lines) is given by (Shaver 1975)
 
 (3) 

 
where n is the principal quantum number, NH+ (cm–3) is the ionized-hydrogen density, 
∆V (km s–1) is the full Doppler profile width at half maximum and γ is the ratio of the 
profile width due to pressure or radiation broadening to that due to pure Doppler 
broadening. The true optical depth in the line becomes 
 

(4) 
 
with 

(5) 
 
where the departure coefficient bn relates the true population, Nn of the atomic energy 
level n to its value in LTE, N *: by the equation 
 

(6) 
 
The bn. values are usually calculated using the condition of time-independent statistical
equilibrium which requires that there are as many transitions into a level as there are 
out of it (see for example Salem & Brocklehurst 1979). For calculations in this paper, we
 

n
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have used the computer code published by Brocklehurst & Salem (1977) to obtain the bn 
and βn values. 
 
 

2.2 Upper Limit to the Electron Density from Observed Line Widths
 
The width of a recombination line due to pressure broadening is directly proportional 
to the electron density in the region and is a strong function of the principal quantum 
number n (Griem 1967). The half-power width of the line due to this was calculated by 
Brocklehurst & Leeman (1971) under the impact approximation as 
 

(7) 
 
This allows us to put an upper limit on the electron density Ne of the regions 
responsible for the lines from the observed widths alone. The contribution to the line- 
width from Doppler broadening is given by 
 

(8) 
 
where 〈 t 〉1/2 is the rms turbulent velocity in the region, Te is the electron temperature
and mH the mass of the emitter (hydrogen). The effective final width can be 
approximated by 
 

(9) 
 

In Fig. 1 we have plotted the expected width of the H 272α recombination line as a 
function of electron density. The width has been calculated using Equations (7), (8) and 
(9) for two different temperatures and assuming an rms turbulent velocity of 20 km s–1 

which is typical for HII regions. As can be seen from this figure, the width increases
sharply for Ne > 50 cm–3 irrespective of the temperature of the region. 85 per cent of
 

 Figure 1. Expected width (FWHM) of the H 272α line (solid line) and continuum optical depth 
at 325 MHz (dashed line) as a function of electron density at two electron temperatures. Path 
length through the gas is assumed to be 50 pc. The hatched horizontal line indicates the 

2V
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the lines observed in the survey reported in Paper I have widths < 60 kHz, which
corresponds to an upper limit for the electron density of 60 cm–3. Although the
observed widths of the remaining 15 per cent of the lines are indicated as being
> 60 kHz in Paper I, they may be made up of multiple components and therefore the
actual widths of the individual components can be much smaller. Even so, the
maximum width of the line, assuming it to be a single component, corresponds to an 
upper limit for the electron density of 100 cm–3. In Fig. 1 we have also plotted the 
continuum optical depth at 325 MHz as a function of density assuming a path length of 
50 pc. It is interesting that, if these regions have sizes of a few tens of parsecs along the 
line of sight, then their continuum optical depth at this frequency exceeds unity for 
densities > 50 cm–3. As the region becomes optically thick the recombination lines 
merge with the continuum and become undetectable, at least under LTE conditions.
 
 

3. Analysis of lines observed toward blank regions and SNRs 
 
Blank regions for our purposes were defined in Paper I as areas in the galactic plane 
where the continuum emission at 5 GHz is a minimum over the telescope beam 
of 2° × 6 arcmin used for these observations. The 5-GHz high-resolution map of 
Altenhoff et al. (1978) was used to select 6 such regions. There are no discrete
continuum sources within these regions. Fig. 2 shows a typical blank region. The
H 272α line has been detected towards all the six such directions. 
 

 
Figure 2. A typical blank region (see text) in the galactic plane for the beam used in the H 272α 
survey (elongated hatched area). The circular hatched area represents the beam used by Lockman
(1976) who observed H 166α line at this position. The 5 GHz continuum map is from Altenhoff et 
al. (1978).
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The line emission observed toward blank regions would fall under the category of 
galactic ridge recombination lines. Such lines were first detected near 18 cm (157α line) 
by Gottesman & Gordon (1970). Subsequently, similar lines have been reported
towards selected positions by Gordon & Gottesman (1971), Jackson & Kerr (1971), 
Gordon & Cato (1972), Gordon, Brown & Gottesman (1972), Jackson & Kerr (1975) 
and Mebold et al. (1976). Lockman (1976) and Hart & Pedlar (1976b), in another 
approach, have observed the H 166α line emission (near 21 cm) at a number of positions 
along the galactic plane (b = 0°) separated by 0°.5 to 1° in galactic longitude from 1 = 0° 
to l = 70°. Some of these positions correspond to regions of continuum minimum as in 
the earlier studies. 

In general, recombination lines are not expected from SNRs. Therefore the
directions towards them are similar to the blank regions. The only difference is the 
presence of a strong background source in addition to the galactic nonthermal
background. 

In Paper I, H 272α line observations have been reported towards 11 directions
corresponding to 10 well-known SNRs. Two of the adjacent directions observed
(near W 44) corresponds to the same SNR. Recombination lines at higher frequencies 
have been detected earlier towards at least three of these SNRs (Cesarsky & Cesarsky 
1973a, b; Bignell 1973; Downes & Wilson 1974; Pankonin 1975). Dulk & Slee (1972, 
1975) have observed a turnover in the continuum spectrum of some of these sources at 
80 MHz, which is attributed to free-free absorption by the line-of-sight ionized gas. 

In this section we shall make use of the line parameters observed at 325 MHz 
(Paper I) and higher-frequency measurements to determine or put constraints on the 
parameters of the line-emitting region. Towards the blank regions and SNRs it is 
reasonable to assume that the lines observed at the two frequencies originate in the 
same gas (this may not be true in the direction of HII regions). We can only determine 
those parameters which have very different functional dependence on the observable 
quantities like line temperature TL and width ΔV. Using Equations 1 to 5 and departure 
coefficients from Salem & Brocklehurst (1979), it can be shown that, for low electron 
densities, the intensity of recombination lines at a high frequency (e. g. H 166α) and of
that at a low frequency (e.g. H 272α) has very different dependence on the electron 
density in the line-emitting region. This is a consequence of the dominance of the 
spontaneous emission at high frequencies and that of stimulated emission due to the 
background radiation at low frequencies. The line intensity due to spontaneous
emission is proportional to the emission measure and therefore to the square of the
electron density in the gas. On the other hand, if stimulated emission is dominant, the
line intensity is essentially proportional to the electron density itself because of the 
similar dependence of the non-LTE factor bnβn. on the electron density.

3.1 A Model for Interpretation of the Observed Line Intensities 
 
We shall adopt a simple plane-parallel homogeneous cloud model (Fig. 3) in which the 
electron temperature Te and the electron density Ne are uniform. The cloud extends
over a path length L along the line of sight, resulting in an emission measure
EM = Ne L. T0   represents the radiation originating behind the cloud. The cloud
cannot be assumed to fill the telescope beam of 2° × 6 arcmin used for the H 272α
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Figure 3. Schematic model used for interpretation of recombination lines in the direction of
blank regions and SNRs. 
 
 
 
observations. The H 157α and the H 166α emission in the blank regions extend
over b = ± 0°.5 perpendicular to the galactic plane (Gordon, Brown & Gottesman 
1972; Lockman 1976; Hart & Pedlar 1976b). Assuming the gas to be present uniformly 
over this range we get a beam dilution factor of 0.6 for the H 272α observations. In all
our analysis we have used this value for beam dilution, for the H 272α line.

In this model, the expected line brightness temperature is given by
 

(10) 
 
where (ΩC./ΩB) is the beam dilution factor, and TL is the line temperature calculated
using Equation (1). For any specified value of Ne, Te, EM and line width ΔV, the line
and continuum optical depths L, and  c can be calculated using equations given in
Section 2. bn. and βn, can be obtained using the computer code of Broklehurst & Salem 
(1977). Further, if T0 and TN are given, the expected TL can be calculated using 
Equation (1). 
 
 

3.2 Electron Density of the Gas 
 
Based on the above model it turns out that the electron density is almost uniquely 
determined if we use the observed intensities of the H 166α and H 272α lines. From 
observations of Lockman (1976) the H 166α line measurements are available within 
0°.3 in longitude for all the blank regions observed (Paper I) and for two of the 
positions the H 166α measurements are within the Ooty beam. The observed H 272α 
line parameters (Paper I), TBL, ΔV and VLSR and the measured total continuum 
temperature TBC, are given in Table 1 for all the blank regions. The peak H 166a line 
temperature observed by Lockman (1976) at the nearest position is also given in this 
table. We assume that the two observations pertain to the same gas. 

The corresponding parameters for eight of the SNR directions are given in Table 2. 
The parameters of the high-frequency lines observed towards two of these directions
(W 49B and W 44) and the references are also given in Table 2. The source 3 C 391,
towards which the H 272α line is narrower than the high-frequency lines will be
discussed elsewhere. For the other 6 directions we use the H 166α line parameters
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observed by Lockman (1976) or Hart & Pedlar (1976b) at the nearest position. These 
parameters are also listed in the table. For four of these six positions the available 
Η 166α measurement are within the Ooty beam and for the other two positions they are 
within 0°.4 of the beam centre. The measured value of 80 MHz optical depth, wherever 
available, is also given in Table 2. 

Using Equation (1) and the model described above, it is possible to find those 
combinations of Ne, Te and EM which produce the observed intensities of both the
Η 166α and the Η 272α lines. The procedure adopted was as follows. For a set of 
specified Ne and Te , in the range 0.1–100 cm–3 and 100–10000 Κ respectively, the
emission measure required to produce the observed intensity of the Η 272α line was
calculated using Equations (10) and (1). For the blank regions the background 
temperature T0 in Equation (1) was taken to be TBC/2 (Table 1). For the SNR directions 
T0 was estimated as follows. We first estimated the expected average brightness
temperature TBSNR over the 2° × 6 arcmin beam, due to the SNR, using the 408 MHz 
flux density, spectral index and size given in the catalogue of Clark & Caswell (1976). 
The contribution to the observed brightness temperature TBC (given in Table 2) from
the galactic nonthermal background was then taken to be
 
 
 
The effective temperature of the radiation coming from behind the cloud for each of the
directions was calculated using 
 
 
 
where it is assumed that half of the observed background originates behind the cloud.
The values of T0 are given in Table 2. As the path lengths involved are not very large, we
used TN = 0. A dilution factor ( ΩC/ΩB) = 0.6 was used in all the calculations. 

Similar calculations were performed to obtain the required emission measure to
produce the observed high-frequency line intensity. In these calculations, we used a
beam dilution factor of unity. For the blank regions we used T0 = Tc /2 and TN = 0. For
the SNR directions all of the observed continuum at high frequencies was assumed to 
originate behind the cloud. The respective widths of the lines at two frequencies, 
wherever available, was used for the calculation. Otherwise, the observed Η 272α line 
width was used for both low and high-frequency lines. 

The results of these calculations are shown in Fig. 4 for the blank region G 4.2–0.0 
and for the SNR G 357.7 – 0.1. In these figures we have plotted the required emission 
measure as a function of electron density Ne to produce the observed intensity of the 
Η 272α and Η 166α lines, for four different electron temperatures. The intersection 
point of the 272α and 166α curves at each of the temperatures gives the electron density 
Ne (and the corresponding EM) which will explain both the observed Η 166α and 
Η 272α line intensities. It is remarkable that irrespective of the temperature Te and 
emission measure EM of the region there is only a very small range of electron densities 
(bounded by the two vertical dashed lines) that is consistent with the line intensities at
both frequencies. This range is less than a factor of 1.5 and for temperatures above
1000 Κ the required density has practically a unique value. 

Using the adopted model, the accuracy of the electron density as determined above 
depends only on the accuracy of the measurements of the line parameters and the 
estimate of the beam dilution factor. Based on the errors of the line intensities the
derived density is determined to within a factor of two. If the beam dilution changes by
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Figure 4. The relation between emission measure and electron density of the gas in order
to produce the observed intensity of the Η 166α (thin lines) and Η 272α (thick lines) lines towards 
(a) the blank region G 4.2 – 0.0, and (b) for the SNR direction G 357.7 – 0.1. The calculation (see 
text) is done for different electron temperatures indicated. The intersection point of the thick and 
thin lines gives the density of the gas. The vertical dashed lines indicate the range of densities
allowed for the temperature range of 100 to 7000 K.
 
 
a certain factor then the derived density changes by a similar factor. An increase in the 
beam dilution (i.e. smaller angular-size for the cloud) for the Η 272α line results in a 
decrease in density. An increase in T0 will increase the derived density. 

In the case of W 49, for which two high-frequency measurements are available, we 
obtained the density in a similar way using both the high-frequency lines. The densities 
which are derived differ only by a factor of 1.5. 

The densities derived from similar calculations for all the blank regions and SNRs 
are given in column 2 of Tables 3 and 4 respectively. They are in the range of 
0.5–7 cm–3. We regard these densities as reliable to within a factor of two. It should be 
noted here that these densities are the true (or local) electron densities of the line- 
emitting regions and not the rms electron density as in the case when it is derived (for 
strong HII regions) from continuum measurements. In the latter case, as also in the case 
of high-frequency recombination lines, the emission is proportional to the square of the 
electron density. But at low frequencies, due to the strong dependence of bn and
particularly βn on the electron density, the strength of the line emission is proportional
to the density itself. Therefore, if there is any clumping in the gas, then the clumps
themselves should have this derived density and the size of the region should increase to 
make up for the decreased filling factor. In other words, if the emission measure of this 
gas is fixed, say by other considerations, then the size of the region (along the line of 
sight) can be   EM/Ne depending on the filling factor of the ionized gas at density Ne.
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Table 3. Derived parameters for blank regions. 

 
 
 
Table 4. Properties of ionized gas towards SNRs 

 
 
 

3.3 Electron Temperature and Emission Measure 
 
Since in the model we are considering there are only three parameters Ne, Te and EM 
which characterize the ionized region, and we have used two measured quantities (the 
intensity of the Η 166α and Η 272a lines) to determine Ne, the other two parameters are 
related to each other through the observed intensity of the Η 166a or the Η 272a line. 
The method used for determining the electron density Ne ensures that the relation 
between Te and EM will be very similar irrespective of whether we use the Η 166a or the 
Η 272a line intensity to relate them. A determination of, or putting a constraint on, 
either Te or EM (or even the path length L) will decide or impose a constraint on the 
other quantity. 

Fig. 5 shows the relation between EM and Te . The lines marked 272α and 166α in 
these figures represent EM as a function of Te required by the intensities of these lines 
given the electron density Ne which was obtained in the previous section. As expected,
the two curves are very similar. On the right-hand ordinate is also marked the effective 
path length obtained simply from the relation L = EM /N e. 
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Figure 5. Constraint on the emission measure, electron temperature and path length through
the gas towards (a) the blank region G 4.2–0.0 and (b) the SNR direction G 357.7 – 0.1, from 
considerations of average interstellar electron density (line marked PSRDM), 5 GHz continuum 
emission (TC5GHz) and geometry of the line emitting region (L 50 pc). See text for arguments. 
The lines marked 166α and 272α represent the constraint based on the observed recombination 
lines. An electron density derived from Fig. 4 is used (see Table 2). The combination of Te and EM 
required to produce an 80 MHz continuum optical depth of 0.25 (TAU 80) is also shown. In the 
case of G 357.7 – 0.1 no constraint can be imposed using 5 GHz continuum.
 
 
 

Unfortunately, there is no other measured quantity available which can be directly 
attributed to this gas and which depends on Te, EM or L in a different way, to impose a 
constraint on any of these parameters. However, we can put some limits on these 
parameters from three considerations. 

The first of these is based on the thermal continuum emission from this gas. At a
sufficiently high frequency like 5 GHz, the contribution to the galactic background
from the nonthermal radiation is very small particularly in the blank areas. Therefore
most of the observed continuum at 5 GHz will be thermal. We have estimated the
average continuum temperature at 5 GHz at each of the observed blank regions using
the high-resolution maps of Altenhoff et al. (1978). The values are given in Table 1. We
now require that the ionized gas which produces the recombination lines should not
produce more than this observed continuum. This will impose an upper limit on the 
EM of the gas which in turn will imply an upper limit on the electron temperature. The
nearly horizontal line marked TC5GHz in Fig. 5 represents this constraint. The
emission measure cannot be above this line. Combining this limit with the relation
between EM and Te we can get an upper limit for Te. The upper limits for all the blank 
regions are given in Table 2. The upper limits for EM are in the range of
2500–4000 cm–6 pc and for Te in the range of 5000–10000K. We cannot use this
argument for the SNR directions since most of observed 5 GHz continuum is emitted
by the SNR itself.
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Given the density of the gas an upper limit on its path length can be imposed using
the pulsar dispersion measure. Vivekanand & Narayan (1982) have analysed the 
dispersion measure toward 224 pulsars and obtained a model for the galactic electron 
density of the form 
 
 

(11) 
 
where z (pc) is the height above the galactic plane. The first term in this expression
represents a distributed medium of average density 〈Ne〉 = 0.03 cm–3 having a scale
height in excess of 300 pc. The second term describes the contribution from localized
higher-density ionized regions (e. g. HII regions) which occur in the galactic plane with a
scale height of 70 pc. The regions responsible for the recombination lines observed
towards blank regions and SNRs can be considered to fall in this category. We can use
the second term of Equation (11) together with Ne determined above, to set an upper 
limit to the effective path length through the gas responsible for the recombination 
lines. 

If Ne is the density of a region lying along a line of sight and Lgal is the path length 
through the entire Galaxy, then the above result imposes a restriction on the effective 
path length L through the region of the form
 
 
 
or 
 
 
 
Using the Ne determined for the blank regions and SNRs and taking Lgal = 20 kpc we 
obtain upper limits of 60–400 pc for the effective path length through the gas 
responsible for the observed lines. The horizontal lines marked PSRDM in Fig. 5
represents this upper limit. The upper limit on L implies an upper limit on EM which in 
turn implies an upper limit on Te. These upper limits are given in Tables 3 and 4. In most 
of the cases these upper limits are lower than those implied by the 5 GHz continuum. 
The upper limits implied by the pulsar dispersion measure are not as rigorous as the 
upper limits from the continuum. This is because the contribution to the interstellar 
electron density from HII regions derived by Vivekanand & Narayan (1982) is an
average over the entire Galaxy; in addition, in their analysis there was a scarcity of 
pulsars in the longitude range of interest here. 

It is possible to set a lower limit to the electron temperature and therefore to the 
emission measure from geometrical considerations. In Fig. 5 it can be seen that a lower 
electron temperature implies a lower emission measure which in turn implies a smaller 
effective path length, since the density of the region is fixed. For a temperature of 100 K,
(which is typical for HI clouds) the required path lengths are in the range of 0.2–2 pc.

As pointed out by Shaver (1976), with such small path lengths the geometry of these 
regions would be very peculiar. The scale height of this gas is estimated to be 70–80 pc 
from a study of the latitude extent of the Η 166α emission by Lockman (1976) and Hart
& Pedlar (1976b). Therefore this gas would have dimensions of ~ 100 pc in the
direction perpendicular to the line of sight. For low electron temperatures, the above
small effective path lengths would require these regions to be in the form of thin
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extensive sheets or small cloudlets distributed along the line of sight with a very small 
filling factor. Both these geometries would be inconsistent with the smooth observed 
line profiles of width 30–50 km s–1. 

It is difficult to set any rigorous lower limit to the temperature from these geometrical 
considerations. However it is reasonable to expect that the path length be comparable 
to or larger than the lateral extent of the gas, which is of the order of 50–100 pc. This
lower limit on the path length requires that the electron temperature be higher than a 
few thousand degrees. The lower limits to the temperature and EM based on a path 
length of 50 pc through the gas are given in Tables 3 and 4. 

It may be possible to set a lower limit to the electron temperature of the ionized 
region only based on the electron density. This is because ionization always results in 
heating of the gas. In fact the main source of heating in most of the interstellar regions is 
through ionization after which the excess energy carried by the liberated electron is
converted into kinetic energy of the particles through collisions (Spitzer 1978). The
electron density of 1–7 cm–3 derived above for the blank regions and SNRs imply high 
ionization rates for hydrogen. It may not be possible to achieve such electron densities 
without heating the gas to a considerable degree. We recall that an average of 0.5 eV 
excess energy of the ionizing photons, over the 13.6 eV ionization potential would
result in a kinetic energy of the electrons corresponding to a temperature of  > 3000 K.

We conclude that the temperature of the gas responsible for the lines observed 
towards blank regions and SNRs is greater than a few thousand degrees. 

Although there is another measured quantity (  at 80 MHz) pertaining to the ionized
gas, along the line of sight to some of the SNRs (Dulk & Slee 1975), it cannot be used to
put an independent constraint on any of the parameters. If one requires that the gas
produce all of the observed 80, the relation between EM and Te is very similar to the
corresponding relation for explaining the observed intensity of the Η 272α and Η 166α 
lines. In Fig. 5(b) the line marked TAU (80) represents this relation for the observed value 
of 80 towards the source G 357.7 – 0.1. As can be seen, this line runs almost parallel to
the lines marked 272α and 166α and therefore does not give a new constraint. However, 
we can require that the gas responsible for the recombination lines should not produce 
more than the observed 80 MHz optical depth. This is easily satisfied for all the SNR 
directions we have considered. The 80 MHz optical depth of the recombination line 
emitting regions calculated with Te = 5000 Κ are given in Table 4. It turns out that the
line-emitting regions can account for most of the observed 80 MHz optical depth.
 
 

4. Lines observed towards HII regions
 

4.1 General Considerations
 
These are possibly the best-studied ionized regions of the Galaxy. They appear as
prominent sources in the radio continuum surveys of the galactic plane (e. g. Altenhoff et 
al. 1970, 1978; Haynes et al. 1978) and are more numerous than any other type of
galactic radio source. 

There are 30 such ‘conventional’ HII regions towards which the Η 272α line has been 
detected in the observations reported in Paper I. The observed line intensity and width for
21 of these directions are given in Table 5. The intensity of low-frequency
recombination lines from these HII regions is expected to be very weak due to the effect
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of pressure broadening and beam dilution. Most of these HII regions have been studied 
elsewhere using both the continuum and high-frequency recombination lines. The 
electron density, temperature and emission measure obtained from such studies, if they 
are available, are given in columns 5, 6 and 7 of Table 5. The upper limit on the electron
density of the gas responsible for the Η 272α lines obtained from their observed widths
are given in column 4. From a comparison of columns 4 and 5 of this table, it is clear
that, with the exception of one or two sources, the HII regions themselves cannot be
responsible for the observed Η 272α lines. Column 8 of the table shows that most of 
these HII regions are optically thick at 325 MHz and for this reason too they are 
unlikely to produce the observed recombination lines. Further, for most of these 
sources the beam dilution factor is 10–2–10–3 (column 10) due to the 2° × 6 arcmin 
antenna beam used in these observations which is much larger than the few arcmin sizes 
of these sources (column 9). The beam dilution will reduce the intensity of the already 
weakened lines (due to pressure broadening and optical depth) to practically
undetectable levels. Therefore, the observed Η 272α lines in these directions must arise
in some gas other than the HII regions. 

We first compare the location of this gas with respect to the HII regions, as implied by
the observed velocities. In column 3 of Table 6 we have given the observed velocity of 
the Η 272α line and in column 4, that of a high-frequency line. There is generally a very 
good agreement between the two velocities, particularly if we take into account the 
errors in their determination (they are 2–5 km s–1 for both). In any case there is always 
a substantial emission of the Η 272α line at the velocity of the high frequency line. This 
immediately implies that the lower-density gas responsible for the Η 272α line is
associated with the HII region. The most reasonable picture for this association is that
the low-density gas forms the outer envelope of the dense HII region responsible for the 
observed high-frequency lines and the continuum. 

The picture that emerges therefore is that the HII regions which are prominent in the
continuum (having densities of 102 – 104 cm–3), and which produce most of the 
observed high-frequency recombination lines, have low-density envelopes which can 
give rise to low-frequency recombination lines. The high-density cores make practically 
no contribution to the low frequency lines. There is observational support for the above 
picture. In a classic paper, Brocklehurst & Seaton (1972) showed that in order to explain
the observed line-to-continuum ratio as a function of frequency it is necessary to use
models of HII regions which contain extensive outer regions of low density. Hart & 
Pedlar (1976a) have observed Η 166α line emission from 13 positions near the HII 
region W 3 and conclude that there is an extended low-density region associated with 
this object. 

Based on such a model, we shall now derive or put constraints on the parameters of 
the low density envelopes from the observed intensity of the Η 272α line.
 
 

4.2 Electron Temperature of the Low-Density Envelopes 
 
The temperature of the low-density envelopes of HII regions is unlikely to be very
different from that of the cores. The temperature of a fully ionized region is basically
governed by the abundance of heavy elements like oxygen, nitrogen, neon etc.
(Osterbrock 1974). The electron temperature depends only weakly on the effective
temperature of the exciting star or stars and the density of the gas. Since the core and the
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outer envelope were presumably parts of the same cloud, the abundance of heavy
elements in them is unlikely to be very different. If the exciting star for the outer
envelope is embedded in the core, then a case can be made for the outer envelope to be at 
a somewhat higher temperature. This is because there will be a hardening of the
radiation emerging after ionization of the core, which will on the average impart a
slightly higher kinetic energy to the electrons liberated in the outer regions. On the 
other hand, the lower density in the outer regions can slightly reduce the collisional de- 
excitation of the coolant ions (OII, OIII etc) thereby increasing the efficiency of the
cooling process. The actual temperature will therefore depend on the relative
importance of these two processes. If the exciting star is in the outer region itself, then
only the second argument applies and the resulting temperature can be somewhat lower
than that of the core.

For our purposes, it is reasonable to assume that the electron temperature of the low-
density envelope is essentially the same as that of the core. These temperatures for each 
of the HII regions is given in column 6 of Table 5. Most of these temperatures are
derived from the Η 110α measurements by Downes et al. (1980), on the assumption of
LTE.
 
 

4.3 Electron Density and Emission Measure 
 
We have used an isothermal, uniform density model (Fig. 6) similar to the one used for
the case of blank regions and SNR directions. The difference here is that the high- 
density core of the HII region is embedded inside the low-density region responsible for 
the Η 272α line. This can have two effects. The continuum radiation from the core can 
cause stimulated emission of there combination line in the lower-density gas in front of 
it. Secondly, if the core is optically thick at this frequency, then it can block the line
emission originating from behind it. However, the angular sizes of these HII regions
(5 arcmin) are very small compared to the 2° × 6 arcmin beam used for observations,
and therefore their contribution to the continuum temperature is, in most cases,
negligible compared to the nonthermal galactic background which is nearly uniform
over the beam. We can therefore neglect to first order both the above effects.

The expected Η 272α line brightness temperature is given by Equations (10) and (1).
For nearby ΗII regions, the background temperature T0 was taken to be equal to the
 

 
Figure 6. Schematic of the model for interpreting recombination lines observed towards HII 
regions. High-frequency recombination lines arise mainly from the central core which is also
prominent in the radio continuum. The low-frequency line originates in the outer envelope.
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observed continuum brightness temperature TBC listed in Table 6. For those HII regions
which are known to be at the far kinematic distance, T0 was calculated using 
 
 
 
where THII is the beam averaged brightness temperature of the HII region core
calculated using its Te, Ne, EM and its angular size θ derived from high frequency 
measurements (see Table 5). in the case of the HII region W 16 (the Rosette nebula) we 
have used T0 = 0 .since it is in the anticentre direction in addition this source is known 
to be of low density (10–15 cm–3) and large angular size (~ 1o). Therefore the observed
Η 272α line can originate from the HII region itself. We have used TΝ = 0 for all the
cases. 

We have calculated the emission measure for densities in the range 0.1–100 cm–3 

necessary to produce the observed intensity of the Η 272α recombination line towards
each of the 19 HII regions. We have used the electron temperatures derived from high- 
frequency measurements (Table 5). The calculations were carried out using beam
dilution factors of 0.3 and 0.6. The above calculations were not carried out for 11 of the
 
Table 6. Velocity, background temperature and derived parameters of HII regions. 
 

 

Distances are taken from Downes et al. (1980) or Radhakrishnan et al. (1972) 
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30 HII regions (towards which Η 272α line was detected) either because the velocity did
not match that of the high-frequency line, or the distance to the HII region was 
unknown. 

The results of these calculations are shown for two of the HII regions (M 20, Μ 16) in 
Fig. 7. The two curves marked 272 (0.3) and 272 (0.6) in the figure shows the required 
emission measure, as a function of electron density, to produce the observed Η 272α 
line intensity, if the beam dilution factor is 0.3 and 0.6, respectively. 

It is reasonable to assume that the extent of the envelope along the line of sight is 
comparable to its linear size in the perpendicular direction, obtained using a source size 
of 0°.6 to 1o.2 (i.e. a dilution factor of 0.3 to 0.6 in east-west) and known distances. We 
thus impose the restriction that the emission measure and electron density of the gas be 
related by 
 
 
where L ⊥ is the size of the line-emitting region perpendicular to the line of sight given
by
 
 
where d is the distance to the HII region, θα is the east-west beam of the telescope, and D
is the beam dilution factor. The region is assumed to fill the beam in the north-south
direction (i.e., the angular extent of the gas is > 6 arcmin). 

The two inclined straight lines marked L (0.3) and L  (0.6) in Fig. 7 shows the above 
restriction on the density and emission measure of the region for beam dilution factors 
0.3 and 0.6 respectively. The intersection of these lines with the corresponding curves 
marked 272 (0.3) and 272 (0.6) define the emission measure and electron density of the 
envelope from which the Η 272α line is observed. As can be seen from Fig. 7, the derived 
electron density Ne increases with decreasing beam dilution factor D. The upper limit 
on Ne obtained from the width of the Η 272α line implies a lower limit of 0.2 for the 
beam dilution factor. 

The electron density, emission measure and the path length through the gas obtained
assuming the most probable beam dilution factor of 0.6, are given in Table 6. If the
 
 

 
Figure 7. Constraints on the emission measure and electron density of the low-density 
envelopes of HII regions (a) Μ 20 and (b) Μ 16, based on the observed intensity of Η 272α lines 
and geometrical considerations (see text). The vertical dashed line is the upper limit on the 
electron density implied by the width of the line. 
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dilution factor D is greater than 0.6 by some factor, then the derived densities will be 
lower by nearly the same factor. The densities are in the range 1–10 cm–3, emission 
measures are in the range 1000–4000 pc c m–6 and the corresponding path lengths 
through the regions are 30–300 pc. The temperatures of these are assumed to be the 
same as those of the cores which are in the range 5000–9000 K. 
 
 
 

5. Discussion of the derived parameters 
 

5.1 Blank Regions and SNRs 

An examination of Tables 2 and 4 reveals that the parameters characterizing the ionized 
gas towards SNRs and blank areas in the galactic plane are quite similar. The regions 
responsible for the observed lines have densities in the range of 1–6 cm–3, their 
temperatures are greater than a few thousand degrees but less than about 8000 K, and 
they have emission measures of 500 to 3000 cm–6 pc. The corresponding path lengths 
through the gas arc in the range 50–200 pc. The similarity is not surprising since the gas 
which is observed in these directions (SNRs and blank regions) is the same as that
responsible for galactic ridge recombination lines observed at centimetre wavelengths. 
Any phenomenon that is as widespread and uniform as the galactic ridge recombi-
nation lines must have some very general explanation. 

The parameters derived here account for the observed strength of the galactic ridge 
recombination lines, and the high-frequency recombination lines towards SNRs. This 
is necessarily true since we have made use of these lines to constrain the parameters.
They account for most of the 80 MHz continuum optical depth observed by Dulk & 
Slee (1975). The gas can possibly also account for the background thermal emission
seen in the galactic plane.

The parameters characterizing the gas responsible for the galactic ridge recombi-
nation lines and the lines towards supernova remnants have been a topic of discussion
in the literature since the first observations by Gottesman & Gordon (1970). Shaver
(1976) has made the most comprehensive study of the available data on these lines.
Combining this data with the few low-frequency (408 and 386 MHz) recombination
line measurements then available (Pankonin et al. 1974; Pankonin 1975; Gordon et al. 
1974) he has concluded that the lines arise in HII regions having electron densities
5–10 cm–3, diameters of 20–200 pc and emission measures of 2000–4000 cm–6 pc. He
favours temperatures of the order of 5000 K. Lockman (1980) has analysed the Η 166α
data near l = 36o and concludes that the gas responsible for the line emission has a
temperature of 1000 K, an emission measure of a few hundred cm–6 pc and a density of 
1 cm–3. 

The parameters derived by us for the line-emitting gas in the direction of SNRs and
blank regions are consistent with an interpretation in terms of high-temperature,
moderate-density (1–10 cm–3) regions. Our results are very similar to those of Shaver 
(1976) who also used low-frequency recombination lines for deriving the parameters. In 
fact the technique adopted by us is similar in many ways to that of Shaver (1976). 
Although we cannot quantitatively estimate the temperature of the gas, we also favour
higher temperatures (a few thousand degrees) based on considerations of pulsar
dispersion measure and geometry of the line-emitting region.
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Based on these results alone it is not possible to decide the origin of this gas. With the 
small path lengths of 50–200 pc derived for these regions, they can not be regarded as 
some component of the general interstellar medium; the average path length through 
the Galaxy at these longitudes is ~ 20 kpc. This gas could be in the form of a number of 
small low-density HII regions, low density envelopes of bright HII regions seen in the 
galactic plane or some other kind of ionized gas produced in localized regions of the 
interstellar medium. This question will be addressed to in a subsequent paper.
 
 

5.2 Η II Regions
 
The density and emission measure derived by us for the gas responsible for the observed
Η 272α recombination lines towards HII regions are about a factor of 10–100 (in most
cases more likely 100) less than that of conventional HII regions. There are only a very
few low-frequency recombination line observations towards HII regions available in the
literature to compare with our results (e. g., Gordon et al. 1974; Pankonin et al. 1974;
Parrish et al. 1977; Pedlar et al. 1978). 

Parrish et al. (1977), based on 300 MHz observations towards W 51B, find that this 
line arises in a region of density < 30 cm–3 and has an angular size 25 arcmin. They
also argue that this low-density gas is associated with the discrete source W 5I B, due to
the observed similar velocities of high and low-frequency lines. This is in fact the
argument we have used as a starting point for deriving the parameters. Pedlar et al.
(1978) interpret their low-frequency observations towards the galactic centre in terms
of low-density gas with Ne ~ 10 cm–3. They note that any single component model
requires that the electron density be ~ 10 cm–3 (irrespective of EM and Te) to account
for the low-frequency lines towards the galactic centre. The parameters derived by us
are quite consistent with these results.

There is at least one HII region (W 16, the Rosette nebula) in our survey (Paper I)
which is known to be large and of low density for which we can directly compare the
parameters derived by us with those from high-frequency measurements. We obtain a
density of 11 cm–3 and EM of 4000 pc cm–6 which are consistent with the parameters
(Ne = 9 cm–3, EM = 2600 pc cm–6) derived by Pedlar & Matthews (1973) using the
Η 166α line, and by Viner, Vallée & Hughes (1979) (Ne = 16 cm–3) using the Η 100α
recombination line.

A comparison of the parameters for the low-density envelopes of conventional HII
regions derived here and those for the regions responsible for the lines observed
towards blank regions and SNRs reveals that they are very similar. As the lines observed
towards SNRs and blank regions are attributed to the gas responsible for the galactic
ridge recombination lines, the above similarity immediately suggests that the latter may 
also arise in low-density extended envelopes of HII regions seen in the galactic plane.
This suggestion will be pursued further in a subsequent paper (Anantharamaiah 1985b) 
where it will in fact be shown that most of the galactic ridge recombination lines do arise 
in the extended envelopes of conventional HII regions prominent in the radio 
continuum surveys. HII regions are so numerous in the inner part of the Galaxy that 
given the kind of low-density envelopes suggested by the analysis in this paper, they 
intersect practically every line of sight in the galactic ridge having l   40°, thereby 
giving rise to recombination lines in every direction within this range.
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Abstract. As dust emission in the far infrared (FIR) is a characteristic 
property of planetary nebulae we searched the Infrared Astronomical 
Satellite (IRAS) point-source catalogue for confirmatory evidence on the two 
new possible planetary nebulae S 68 and 248 – 5 identified by Fesen, Gull & 
Heckathorn (1983) and the high-excitation planetary nebula 76 + 36 detected 
by Sanduleak (1983). We identify the nebulae 248 –5 and 76 + 36 with IRAS 
sources 07404 – 3240 and 17125 + 4919, respectively and have determined 
their dust temperature, total FIR emission and optical depth. We also set a 
lower limit ranging in value from 1.2 × 10–6 to 3.7 × 10–5 for Mdust/M☼

 of 
the nebula 248 – 5 depending on whether its grain material is silicate or 
graphite. S 68 could not be identified with an IRAS source. 
 
Key words: planetary nebulae, dust temperature—planetary nebulae, op- 
tical depth—planetary nebulae, far infrared flux

 
 

1. Introduction 
 
Most of the galactic planetary nebulae (PNe) with large angular sizes are now believed 
to be identified through careful searches of Palomar Observatory Sky Survey (POSS). 
The few that could have been still missed (Weinberger et al. 1983) are likely to be due to 
planetaries of either large angular size with very low surface brightness, or nebulae of 
very high excitation which appear extremely faint on the POSS prints due to their 
emitting very strongly in [OIII] λλ 4959,5007 lines where the POSS Ο and Ε emulsions 
are relatively insensitive. 

Parker, Gull & Kirshner (1979) carried out a deep, wide-field and low-resolution 
photographic emission-line survey of the galactic plane. Employing a wide-field camera 
and narrow passband interference filters, they recorded the galactic plane in [OIII] 
λ 5007, Hα+ [NII] λ 6570, SII λ 6736, H β 4861 and λ 4225 continuum emissions. 
Fesen, Gull & Heckathorn (1983) searched these plates for objects particularly strong 
in [OIII] emission which had not been identified till then or had uncertain 
classifications. Since the survey recorded emission at very faint levels ([OIII] emission 
measure ~100 pc cm–6), using a relatively small plate scale and low angular resolution 
Fesen, Gull & Heckathorn (1983) were able to notice only fairly large and bright 
nebulae. From the very strong [OIII] emission, symmetrical morphology and the 
presence of faint blue central stars, Fesen, Gull &Heckathorn (1983) suspected S 68 and 
an anonymous nebula 248 – 5 to be planetary nebulae.

Sanduleak (1983) detected a new, resolved high excitation planetary nebula (1950 
coordinates: α = 17h 12m.5, δ = + 49° 19′, 1 = 75°.8, b = + 35°.8) containing a 14 
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magnitude O-type central star on objective prism plates taken for the low-dispersion 
Northern Sky Survey (Pesch & Sanduleak 1983). The nebula was first detected by its 
strong emission in [OIII] λλ 5007, 4959 lines on the spectrum obtained using an 
objective prism on Kodak IIIa-J plate. A 45 minute exposure, on a Kodak 103a-F plus 
GG 455 filter combination plate at a dispersion of 1000 Å mm–1 at Hα showed that the 
(OIII) λλ 5007, 4959 emission was stronger than the emission of Hα possibly blended 
with [N II] λλ 6548 and 6584. Their objective prism observations thus indicated a high- 
excitation planetary containing a central star of moderate brightness with a very strong 
ultraviolet continuum. 

The strong [OIII] lines of 4959 and 5007 arise from transitions between the 
metastable levels of the ground state electron configuration of Ο+ + formed in the 
plasma either around newly formed young stars or around the central stars of planetary 
nebulae. They thus serve to identify gaseous nebular regions in the sky. In these plasma 
dust is intimately mixed with ionized gas and is heated by Lyman α radiation (produced 
as the end product of recombinations in hydrogen) as well as Lyman continuum 
photons and photons longward of the Lyman α The dust so heated generally has a 
characteristic temperature of 60–200 Κ (see Pottasch 1984) and emits in the far infrared. 
The availability of the IRAS (Infrared Astronomical Satellite) point source catalogue 
now enables one to seek confirmatory evidence in the far infrared for the presence of 
such nebulae by identifying them with sources of FIR and to determine their other 
physical properties such as temperature and mass of dust etc. The field of view of the 
IRAS survey bands at 12, 25, 60 and 100 μ m is 0.75 × 4.5, 0.75 × 4.6, 1.5 × 4.7 and 3.0 
× 5.0 arcmin2 and happens to be much larger than the sizes of many planetary nebulae 
(PN). Thus most of the PN appear as point sources to the IRAS photometric survey 
instrument and should appear listed in the point source catalogue if emitting in far 
infrared (FIR). We therefore undertook a search of the IRAS point source catalogue 
(Beichman et al. 1985) to identify and to derive information on the dust in these 
nebulae. 
 

2. Analysis of data, results and discussion 
 
We present in Table 1 data on two of the three nebulae which could be identified with 
sources in the IRAS catalogue. Listed columnwise in Table 1 are (1) the name of the 
nebula and its galactic co-ordinates, the IRAS number of the source with which it is 
identified, (2) its right ascension and declination, (3) the angular size of the source and 
its distance, (4) the flux densities in the four IRAS photometric survey bands, and (5) the 
dust temperature, total FIR flux, optical depth at 25 μ m and Mdust/M☼ of the nebula 
determined from this work. 

248 – 5 has been detected by IRAS. Definite values are available for its flux density in
the 25 and 60 μm bands although the quality of the measurement in the 25 μm band is 
moderate (flux uncertainty   20 per cent). The data from IRAS catalogue under the 
heading ‘confusion’ indicates that this is the only source in the IRAS window at 100 μm. 
But the cirrus contribution at 100 μm is rather significant. Also 3 small extended 
sources are detected in the IRAS windows at 25 and 60 μm at this source position. It is 
well known that planetary nebulae contain density condensations and it is quite likely 
that the 3 small extended sources detected by IRAS are all density condensations of the 
same nebula 248 – 5. This nebula has a size 130 × 180 arcsec2, larger than many 
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planetary nebulae, raising doubts as to its identification (Fesen, Gull & Heckathorn, 
1983) as a planetary nebula. However, planetary nebulae with radial sizes > 100 arcsec 
are not uncommon (see Appendix 1, Pottasch 1984) and cannot by itself be used to 
question its classification. 

From the observed flux densities at 25 and 60 μm we determine a colour temperature 
of ~ 85 Κ for the dust radiating in the far infrared and a value of ~ 9 × 10–14 Wm–2 

for the total flux at earth (in the 4–300 μm interval) and 2.4 × 10–7 for its optical 
depth at 25 μm. 

We use the expression 
 
 
 
 
(see formula VIII-5, Pottasch 1984) to estimate the mass of dust (radiating in FIR) in 
the nebula. We assume Qv at frequency ν is proportional to a, the radius of dust grains, 
and use of a value of aρ/Q30μm (abs)   1.5 × 10–3 for silicate materials and 5 × 10–2 for 
small graphite grains (Pottasch 1984) and use values of Fv and Bv (T) at 25μm to 
evaluate the mass of dust in the nebula. Fv and Bv are the FIR flux density and Planck 
function in frequency units at frequency v, respectively and Τ, ρ and Qv (abs) are the 
temperature, specific density and absorption efficiency of the grains, respectively d is 
the distance to the nebula. Using for d the maximum distance of the nebula viz., 
1.38 kpc (see Fesen et al. 1983) we obtain for Mdust   1.2 × 10–6 Μ

☼
to 3.7 × 10–5 Μ

☼
 

depending upon whether the grain materials are silicate or graphite.
A definite value is available only at 25 μm for the flux density of the IRAS source 

17125 + 4919 identified with the planetary nebula 76 + 36 discovered by Sanduleak 
(1983). We have only upper limits to the flux densities at 12, 60 and 100 μm. Assuming 
the FIR emission from the source to have its peak flux density at 25 μm we assign a 
temperature of ~ 120 Κ for the dust. We estimate the total FIR flux from the nebula to 
be ~ 5 × 10–14 Wm–2, and its optical depth at 25 μm to be ~ 4 × 10–6. 

A search of the IRAS point source catalogue for the FIR counterpart of the nebula 
S 68 within a radius of 10 arcmin (twice the size of the observing aperture along the 
direction of its maximum dimension) centred on its optical position did not result in 
any identification. If this source is an Η II region or a planetary nebula it seems to be 
fainter than the sensitivity limits of detection of the IRAS photometric survey.

Compact Η II regions can sometimes be mistaken for planetary nebulae (because of 
similar sizes). Some of the properties (in the infrared) that can be used to distinguish Η II 
regions from PNe are their, (i) infrared excess, IRE (defined as the ratio of the infrared 
flux density to the flux density of Lyman-α-radiation produced in the nebula), (ii) dust to 
ionized gas mass ratio, Md /Mg and (iii) dust temperature. 

The IRE of Η II regions is ~ 14 (Panagia 1976) as against an IRE   3 (see Table 3 of 
Barlow 1983; Table 2 of Pottasch 1984; and Table 2 of Pottasch et al. 1984). Md/Mg 
values of H II regions are ~ 10–2 as against ~ 5 × 10–4 for PNe (see Table VIII-1; 
Pottasch 1984, and Pottasch et al. 1984). The dust temperature of Η II regions covers an 
extremely wide range (from several hundred degrees to tens of degrees) depending on 
the wavelength bands of observation, compared to ~ 120 ± 60 Κ for PNe.

The available infrared data on nebulae (under discussion here) are rather scanty and 
cannot be decisive in confirming their identification. However, the dust temperatures of 
the nebulae 248 – 5 and 76 + 36 are consistent with their identification (Fesen, Gull & 
Heckathorn 1983; Sanduleak 1983) as PNe. Also, the mass of dust in 248 – 5 is typical 
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of mass of dust in PNe (assuming typical values of Md/Mg ~ 5 × 10–4 and ionized gas 
mass Mg/M☼

 ~ 5 × 10–2 for PNe). 
 
 

3. Conclusions 
 
We identity the new planetary nebulae 248 –5, and 76 + 36 with the IRAS sources 
07404 – 3240 and 17125 + 4919, respectively. We determine the dust temperature of 
the nebula 248 – 5 as ~ 85 Κ and its total FIR emission and optical depth as 
~ 9 × 10–14 Wm–2 and 2.4 × 10–7 . We also estimate Mdust in the nebula to have a 
value (1.2 – 37) × 10–6 M

☼
. We assign a temperature of ~ 120 Κ to dust in nebula 76 

+ 36 emitting in FIR and estimate its total FIR flux and optical depth to be   5 × 10–14 

and ~ 4 ×10–6 respectively. 
The temperature of dust in these two nebulae are similar to those of other planetary 

nebulae. Also their optical depths are similar to those of other faint planetary nebulae 
(viz.,   10–5). Thus the FIR data from IRAS on these two objects support their 
identification as planetary nebulae. 
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Abstract. We investigate the evolution of rotation period and spindown age 
of a pulsar whose surface magnetic field undergoes a phase of growth. 
Application of these results to the Crab pulsar strongly indicates that its 
parameters cannot be accounted for by the field growth theories. 
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1. Introduction
 
Various authors (Woodward 1978, 1984; Blandford, Applegate & Hernquist 1983 and
references therein) have suggested the possibility that the observed magnetic fields of
neutron stars were generated after their birth by a thermally driven battery mechanism.
In this picture, neutron stars are born with very low magnetic fields   108 G and over a
period of about 105 yr the fields are built upto ~ 1012 G, the typical value inferred for
pulsars. It is not clear if the necessary dipole fields can be generated in this manner
(especially the ‘vertical’ components in the terminology of Blandford, Applegate & 
Hernquist 1983). However, assuming it to be possible we shall discuss here the 
implications for the evolution of rotation period and spindown age of the pulsar. 
 

2. Definitions of relevant timescales 
 
Several different timescales enter the following discussion. They are defined as, 
 

t : the pulsar age  
tc (t) ≡  P(t)/2P(t) is called the spindown age or the characteristic age of the pulsar 

Here Ρ and Ρ are the pulsar period and its time derivative respectively. The 
value of tc for a pulsar at birth is tc. 

τm: the characteristic timescale for growth of the pulsar magnetic field. 
τsat: the time taken for the magnetic field to saturate from the start of its growth. 

 

3. Evolution of the pulsar rotation 
 
Assuming a simple ‘magnetic dipole radiation’ type of slowdown for the pulsar, we have 
the well-known relation: 
 

(1) 
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where Ρ is in s, Ρ in s s–1 . B12 is the magnetic field Β in units of 1012 G. Integrating 
Equation (1) one finds, 
 

(2) 
 
where Po is the initial period. 

In the abovementioned models, the magnetic field of the neutron star grows
exponentially with time for ~ 105 yr and reaches saturation at Β ~ 1012 –1013 G. It 
remains at this value till eventual decay sets in at the age of a few million years. In the 
growth phase, the initial field Bo grows to 
 
 
and thus  

(3) 
 

(4) 
The spindown age is now  
 

(5) 
 
 
The variation of tc with t is as shown in Fig. 1 

After saturation has been reached, i.e. t > tsat, the evolution changes and writing 
B (tsat) = Bsat, we have 
 

(6) 
and  

(7) 
 
which are the usual constant field evolution formulae.

Although one can discuss the various cases which can be distinguished by different 
relative magnitudes of the timescales involved, we shall consider only those which are
physically reasonable. Obviously, the case when tsat    m is not of much interest as it
corresponds to a pulsar being born with a magnetic field almost equal to its present 
 

 
Figure 1. Evolution of spindown age of a pulsar as a function of time during exponential 
growth of its surface magnetic field. All times are in units of growth timescale τm of the magnetic 
field. Evolution is shown for three different values of initial spindown age tc, namely, 104 τm, 
0.5 τm and 10–2 τm ,as indicated beside the respective tracks. The spindown age approaches and 
saturates at the value 0.5 τm. The dotted line shows the evolution of surface magnetic field, the 
corresponding scale being at the right. 
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value and thus defeating the motivation for the magnetic field growth. In the following
we shall therefore assume that τm. <  tsat. Normally one also expects to >  τm; e.g.
for Po = 10–3  s and Bo = 108 G, tc ~109 yr. Even if Bo = 1010 G, tc would be 
~ 105 yr, Thus we take tc  > τm / 2 , and find, using Equation 5, 
 

(8) 
 

We shall consider two possible histories of the Crab pulsar in relation to the Crab 
nebula, since it has often been suggested that pulsars may be born in binary systems (see 
e.g., Gunn & Ostriker 1970). Indeed, on the basis of observed pulsar proper-motions it 
has been concluded that almost all pulsars are released from binary systems 
(Radhakrishnan & Shukre 1985). Pulsars born in binary systems would be seen as 
single pulsars only if the binaries are disrupted. Such binaries are expected to undergo 
two supernova explosions, a few million years apart (van den Heuvel 1977). Also, due to 
mass transfer effects in such systems, it will be most likely the second explosion and not 
the first one which will disrupt them (van den Heuvel 1976). In general, after disruption 
a binary will thus release two neutron stars —one old and one young. Keeping this in
view, we therefore consider in turn the two alternatives, i.e., the Crab pulsar is the one 
born in either the first or the second explosion in a binary system. 
 

4. The Crab pulsar as a young neutron star 
 
If the Crab pulsar were born in the explosion of AD 1054 which created the nebula, its 
age is  
 
Also, at present  

(9) 
 
 
and 
 
Using Equation 8 (and also 6 if t > tsat), one finds, irrespective of the relative
magnitudes of t and tsat, that 

(10) 
 
clearly at variance with the value of ~ 105 yr invoked for τm in the above-mentioned
models. 

Thus to reconcile the field growth picture with the present value of the Crab pulsar 
field one must then consider τm    2400 yr, as already noted by Blandford, Applegate & 
Hernquist (1983). In addition, we also impose the modest requirement that the present 
field is at least one order of magnitude more than the initial field. Now, in the case when 
t < tsat this implies τm    400 yr. Also, since 
 

(see Equation 4), 
 
substituting observed values for P and B, we get 
 
 
Such an initial period corresponds to a total energy loss of   3 × 1048 erg since the 
birth of the pulsar and is at least an order of magnitude less than the energy budget of 
 

≲ 

><
c



236 D. Bhattacharya & C. S. Shukre 
 
the Crab nebula. The nebula has   1049 erg in the present relativistic-particle and
magnetic-field content. We further require ~ 1049

 erg for post-acceleration and
> 1048 erg to account for the radiation since its birth (Woltjer 1958; Trimble & Rees
1970; Trimble 1971; Rees & Gunn 1974). As there are compelling reasons to attribute all 
of this energy to that derived from the rotation of the Crab pulsar, any value of 
P0    20 ms is ruled out. 

In the other case, when tsat < t, using Equation (6) one can show that it is possible to 
have P0 < 20 ms, but then the requirement Bsat    10 B0 implies that tsat,   180 yr and 
τm    80 yr, which essentially amounts to instantaneous field build up. 
 

5. The Crab pulsar as an old neutron star
 
The other alternative is that the Crab pulsar is older than the nebula and the companion
of the star which became a supernova in AD 1054. The pulsar produced in this 
explosion remains undetected. Equation (9) now changes to 
 
 

Since a change in t does not affect the inequality (10), it still holds. In addition, we also 
find from Equation (7) that t –tsat  1200 yr. Consequently, the field would have 
grown by an incredible factor of 10700 over 4 x 106 yr*, unless the stellar evolution 
timescale of the companion was ~ 104 yr, an unacceptably low value. We thus see that 
it is not possible in the case to explain both B and tc simultaneously. 

It may be argued in this connection that the field might have built up during a short-
lived (~ 104 yr) accretion phase. But as this accretion must have definitely stopped 
930 yr ago, from Equation (7) it follows that the characteristic age at that time was 
270 yr. This then is the upper limit on τm/2 and we are once more led to an 
unreasonably fast growth of the field. Also, recent studies of known X-ray binary 
pulsars do not show any evidence of growing fields during accretion (Ray 1984). 

We also investigated a power-law type growth for the magnetic field which may be 
relevant in the non-linear phase (Blandford, Applegate & Hernquist 1983). The details 
are not very illuminating but the conclusions are very similar to the above exponential 
case. For the case when the pulsar is young, it is not possible for both tc and t to have 
small values. In the other case when the pulsar is considered to be an old object, again 
the field must grow in a very short time interval. Similar conclusions can be arrived at 
also by considering the variation of the braking index with time. 
 

6. Effects of accretion torques 
 
So far we have restricted ourselves to the slowdown of pulsar period due to radiation 
losses. There is, however, one other factor which affects the rotational history of a 
pulsar which must be taken into account when applying the field-growth formulae, if 
the neutron star happens to be in a binary system. During the mass transfer phase the 
angular momentum of the accreted matter could ‘spin up’ the neutron star (see, e.g., 
review by Henrichs (1983) and references therein). Such a decrease in period will reduce 
 

* This corresponds to an initial magnetic momentum of the neutron star less than that of a single neutron (by
about 10–645!). 
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the characteristic age of the pulsar. However, it cannot go on indefinitely and the 
minimum period the neutron star can attain depends on its surface magnetic field and 
corresponds to the Eddington accretion rate (Srinivasan & van den Heuvel 1982). As a 
consequence, the final characteristic age will be ~ 107 yr (Radhakrishnan 1984). It is 
easily seen therefore that such a scenario cannot explain the 1200 yr characteristic age 
of the Crab pulsar, no matter how the field varies with time. 
 

7. Conclusions 
 
If the Crab pulsar magnetic field has grown significantly in the past 930 years since its 
birth, the Crab nebula could not have been powered by it unless the field growth 
occurred in a very short time (   200 yr). However, this is then equivalent to the pulsar 
having its present field essentially at birth. Alternatively, if the pulsar, being a product of 
the first supernova explosion in a binary system, is older than the nebula, then the field 
growth picture cannot accommodate the values of the present magnetic field and the 
characteristic age of the pulsar simultaneously. 
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Abstract. We consider the effect of quantizing the homogeneous mode of a
scalar field on inflation. It is shown that any semiclassical description of the
scalar field is bound to lead to density inhomogeneities which are unac-
ceptably large.
 
Key words: gravitation, quantum fluctuations—universe, inflationary

 
 

1. Inflationary physics
 
The idea of an inflationary epoch as a cure for various cosmological ‘problems’ has
caught the fancy of the physicists in recent years. As one started looking deeper into
these scenarios new problems seem to surface. To begin with, the most (and only!)
natural scenario suggested by Guth (1981) led to an extremely inhomogeneous universe
(Guth & Weinberg 1983). By adopting a special kind of dynamical symmetry breaking
scheme, ‘new’ inflationary scenario solves this problem (Linde 1982; Albrecht &
Steinhardt 1982). However, quantum fluctuations of the scalar field in this model leads
to large density inhomogeneities. It is necessary to fine tune the parameters in the
potential in a rather arbitrary manner to arrive at ‘correct’ answers. Since the basic
motivation for inflation stems from a desire to avoid fine tuning, it is not entirely clear
whether we are any better of in the end.

More fundamental problems have come up recently regarding the ‘new’ inflation.
Doubts have been cast on the validity of the semiclassical analysis which is resorted to,
and also on the nature of the initial state of the scalar field prior to slow ‘roll over’.
(Evans & McCarthy 1985; Mazenko, Unruh & Wald 1985).

To provide complete answer to these questions, it is necessary to go beyond the
semiclassical approximation. We must construct a quantum theory for the interacting
scalar field in a Robertson-Walker background, and, couple suitable expectation value
of the energy-momentum tensor of the scalar field to the background geometry as a
source term. In this paper, we tackle a much less ambitious project: We treat the
homogeneous mode of the scalar field as a quantum variable and describe the self-
consistent dynamics of the coupled system. The final result is once again negative: any
reasonable description for the initial state of the field leads to too much of
inhomogeneities.

We wish to emphasize that the work described here must be considered as a ‘toy
model’. Taking into account the spatial degrees of freedom may change the nature of
the result. Such a possibility is under investigation.
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2.  Quantum mechanics in de Sitter spacetime
 
Consider the action for a scalar field ϕ with a potential V (  ):
 

(1)
 
We shall take the spacetime to be a k = + 1 universe with the line element:
 

(2)
 
By assuming that ϕ (x, t) = ϕ (t) we shall reduce the quantum field theory problem in
Equation (1) to a quantum mechanical problem. The action in (1) becomes,
 

(3)
 
 (4)

where,
 

(5)
 
Corresponding to the action in Equation (4) we have the Schrödinger equation:
 

(6)
 
(We are using units with c = h = 1 such that, ϕ–1, S, t, Τ–1/2 and |ψ |2 have the
dimensions of length). In a given background geometry, Equation (6) determines the
probability functional ψ [ϕ, t]. To complete the dynamics, we should use the
expectation values of T i as the source of Einstein’s equations. From Equations (l) and
(3) it follows that,
 

(7)
 
 

(8)
 
(We have used the fact that the canonical momentum p corresponding to ϕ is 2π2S3 φ).
The expectation values of T  0 and T 1 in a state ψ (ϕ) are,
 

(9)
 
with,

(10) 
 
and, 

(11) 
 

k

0
1

^ 

ϕ 

.
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Einstein’s equation with T i as the source are equivalent to a set of two equations:
 

(12)
 
 

(13)
 
It can be easily verified that Equation (13) is equivalent to the equation of motion for
the scalar field in the classical limit. In writing (12) and (13) we have ignored all other
source terms except the scalar field. This is justifiable because we shall be mainly
concerned with the inflationary phase in which S(t) ∝ exp (Ht); during that epoch,
radiation (S–4) and matter (S–3) terms cease to be relevant. Similarly the S–6 and S–2

terms in Equation (12) can also be ignored.
The complete dynamics is determined by Equations (6), (12) and (13). In order to

produce an analytic solution to these equations, we shall approximate the potential
V(ϕ) by a constant V0 for ϕ < ϕf and by zero for ϕf <ϕ <  ϕb. We assume infinite
potential barrier at ϕ = ϕb. Such an idealization of the Coleman–Weinberg type
potential turns out to be adequate for our purposes.

To solve the Schrödinger equation in this potential, it is necessary to know the initial
wave function, ψ [ϕ, 0]. We shall assume the initial wave function to be a gaussian:
 

(14)
 
We have chosen Equation (14) such that    ϕ   = ϕι , (Δϕ)  = σ2 and
 

(15)
 
represents the ‘rolling down’ velocity along the flat region.

The addition of a pure phase term in (14) which ensures a non-vanishing 〈(dϕ /dΤ)〉, is
absolutely essential. The actual potential has a gentle slope towards larger ϕ thereby
inducing a ‘roll over’ velocity. Since we have idealized the potential by a constant V0, it 
is necessary to put this term by hand.

It should be noted that the choice in Equation (14) is different from the usual choice
made in inflationary models. It is usually assumed that the wave functional ψ[ϕ (x), t]
desribing the state of ϕ (x) is symmetric under (ϕ → – ϕ). (In other words, ϕ is as likely
to ‘roll’ towards the positive side as towards the negative side). Such an assumption,
however, suffers from the following difficulties:

(i) At a very basic level, one simply does not know whether such an assumption was
realized in the early universe or not. Granted this uncertainty, it is worthwhile
examining the sensitivity of the results to changes in this particular assumption. Note
that the symmetry of the hamiltonian under (ϕ → –ϕ) does not guarantee the same
symmetry for the initial state.

(ii) Once we force the initial state to have the symmetry, 〈ϕ 〉 will vanish. This, in
turn, forces us to consider the classical part and the quantum fluctuations in very
different manner. Both in quantum mechanics, as well as in the quantum field theory
based on Schrödinger (functional) equation, it is conventional to identify 〈ϕ 〉 as the
classical limit. Since we can no longer do this, (because 〈ϕ 〉 vanishes, while ϕclass has to
evolve) it is necessary to take ϕclass as the solution to classical equations and quantize
 

〈 〉
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perturbations of ϕ around ϕclass by a suitable procedure. Crudely speaking, the ϕclass 
‘rolls’ down ‘carrying’ with it the fluctuations 〈ϕ 2〉1/2. Such an approach, to say the
least, is unusual. It is definitely worthwhile to see whether an initial state can be chosen
so that 〈ϕ 〉 represents the classical evolution and 〈 [ϕ – 〈ϕ 〉 ]2 〉1/2 characterizes the
fluctuations. 

(iii) As was noted repeatedly in the literature, inflation can proceed from any local
region of space which satisfies the requisite conditions. If the initial state is thermal or
chaotic, there will be a probability distribution for the values taken by ϕ (x, 0). It is
interesting to examine the consequences if inflation proceeds from a region with
nonzero value for L, i.e. a region where ϕ has a preference to roll along a specific
direction.

These are our reasons to deviate from the usual assumptions and take Equation (14)
with L ≠ 0. We shall interpret 〈ϕ 〉 as the classical limit of the field.
The general solution to the Schrödinger equation (6) for constant V can be easily
obtained to be,
 

(16)
 
where the function C (l) has to be determined from the initial condition (14). Calculating
C (l) and substituting in (16) we get the probability distribution to be,
 
 
 

(17)
 
with, 

(18)
 
 
Straightforward use of Equations (16) and (17) will also yield the following expectation
values: 
 
 
 

(20)
 
When V(ϕ) is a constant, p2 commutes with the Hamiltonian. Therefore, 〈p2〉 is
independent of time. Equation (13) is thus identically satisfied. In order to obtain a self-
consistent description we only have to solve (12). Obviously, for (Ht)  1 the
exponential solution 
 

(21)
 
exists, leading to the usual inflationary scenario. As described before, only the b-term
dominates (12) in the limit of (Ht)   1. We shall now consider the various constraints
on this evolution.
 
 

3. Constraints on parameters
 
We shall take for ϕf and V0, values similar to that in Coleman-Weinberg
 

^

≳ 
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potential: 

(22)
leading to

(23)
 
From Equations (19) and (21) it follows that the ‘centre’ of the wave packet has the
trajectory:
 

(24)
 
In other words the expectation value of the scalar field starts ‘rolling over’ with constant
velocity (i.e. for Ht   1,  (  〈ϕ〉  – ϕi) ∝ t, but very soon slows down. It approaches the
asymptotic value of
 

(25)
 
For successful implementation of reheating we need 〈ϕ 〉 to have ‘fallen down’ the well
as Ht → ∞. In other words,
 

(26)
 
Since ϕf     ϕI we may take this condition to be
 

(27)
 
Using Equations (22) and (23) in (27) we get,
 

(28)
 
By taking ϕ f < 〈ϕ 〉∞, one can easily prolong the roll-ver phase as much as one
wants; thus there is no difficulty in achieving sufficient inflation.

The initial state was assumed to be well localized near the origin and definitely far
away from ϕf This implies that, 
 

(28)
 
Equations (28) and (29) constrain the choice of parameters in the initial state.

In order to compute the inhomogeneities produced during the inflation, it is
necessary to discuss the spatial degrees of freedom of ϕ. However, an order of
magnitude estimate can be made along the following lines.

It is known that the value of the density contrast (δρ/ρ) is given by (see e.g
Starobinski 1982; Hawking 1982; Guth & Pi 1982; Bardeen et al. 1983)
 

(30)
 
Here   is a number of the order unity, Δϕ  is the quantum spread in the scalar field, and ϕ
is the roll-over velocity. The right-hand side should be evaluated at the time when
galactic size perturbations ‘freeze out’ of the horizon. Physically one may interpret
 

(31)
 

ε 
.
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as the time lag between the ‘leading edge’ and ‘trailing edge’ of the wave packet. Because
of this time lag the scalar field ‘falls over’ the potential at different places at different
times, leading to inhomogeneities.

Since we know the evolution of the wave packet the time lag Δτ can be computed 
directly as, 
 

(32)
 
where t± are the roots of the equation,
 

(33)
 
Straightforward  algebra gives (talking ϕ f      ϕ0; σ0   ϕf ),
 

(34)
 
so that,
 

(35)
 
The disturbing exponential factor is due to the fact that 〈ϕ 〉 is much smaller than the
constant velocity assumed in the conventional roll-over, scenario. Note that, 
 

(36)
 
While (dϕ /dΤ) remains constant, (dϕ/dt) keeps on decreasing. Clearly, the exponen-
tial in Equation (35) makes matters much worse than usual. One way to get out of this
trouble will be to assume that the ‘freeze-out time t1’ for the relevant length scale is of
the order of H–1. (Turner has pointed out that galactic size perturbation crosses the
horizon at about 50H–1 before the end of inflation; i.e., t1   10H–1 (Turner 1983).
Taking t1   2H–1, therefore, can be a drastic approximation.) With this understand-
ing, we write,
 

(36)
 
where β is probably a numerical factor of the order of (10–100). On the other hand, we
want ( ρ/ρ) to be about 10–4. Clearly, it is necessary to have L2σ2   1. In this limit, we
get,
 

(37)
 
which gives the further constraint,
 

(38)
 
Altogether we have arrived at the following constraints on the parameters (cf.
Equations (28), (29) and (38)) 
 

(39)
 
If these are the only constraints on the system, then they can be easily satisfied. For
 

≃ 
≃ 
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Example, one can choose (with β    102).
 

(40)
 
Unfortunately, these are not the only accepted constraints. It is usually assumed that a
scalar field in a de Sitter spacetime has fluctuations which are at least of the order of
(Η/2π). This result corresponds to the usual ‘temperature’ (Η/2π) associated with the
de Sitter spacetime. If we assume this result to be valid in an inflationary scenario, then
it is necessary to satisfy the additonal constraint,
 

(41)
 
From the first constraint in (39), it follows that,
 (42)

Combining (42) and (41),
(43)

 
which is grossly inconsistent with (38). In other words, the simplest version of quantum
mechanical inflation leads to density inhomogeneities which are large by a huge factor.
 
 

4. Discussion 
 
Treating the scalar field as a quantum mechanical object does not offer any relief from
the disturbing conclusions already known in literature. The analysis however brings out
two features: (i) The cause of the problems in new inflation is not the semiclassical 
approximation made in the usual analysis, (ii) The condition (41) plays a crucial role in
producing too much of inhomogeneities. But for this constraint, one can arrive at
acceptable values of density inhomogeneities.

It is possible that Equation (41) is not really as sacred as it is taken to be. It has been
argued in literature that thermal effects due to event horizons do not restore a
spontaneously broken symmetry (Hill 1985). Possibly, thermal effects do not
contribute to the dynamics of de Sitter space either. In this connection it should be
remembered that the spacetime is never truly de Sitter; it only approaches the de Sitter
spacetime asymptotically.

The discussion presented in the paper needs to be generalized in three different
aspects: (i) inclusion of spatial dependence, (ii) examination of other initial conditions,
(iii) amore realistic description of the potential V(ϕ). We hope to present such a detailed
analysis in a future paper.
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Abstract. The effect of a perturbing mass on a homogeneous collisionless
cloud of dark matter is considered in the linear approximation. It is shown
that gravitational potential can have turning points, in sharp contrast with
gravitating systems of finite extent. The model offers a reasonable explanation
for the observed secondary maxima in the density distribution of rich clusters.
The relevance of the model to the flatness of the rotation curves of galaxies is
also discussed.
 
Key words: dark matter, collisionless—cluster of galaxies, dark matter—
galaxies, rotation curves

 

1. Introduction
 
One of the most intriguing problems in present day astrophysics is related to the fact
that estimates of visible matter (at various length scales) fall systematically short of the
amount of gravitating matter at the same scale (Rood 1981; Bahcall 1977; Peebles 1979;
Faber & Gallager 1979). This problem, usually christened ‘Missing mass problem’, has
attracted considerable attention of late in the form of wide variety of explanations. (For
a study of the systematics at various length scales, see Cowsik & Vasanthi 1986.) The
explanations range from using the relics of the big bang to modifying Newton’s law of
gravity (see for e.g. Cowsik & McClelland 1973; Pagels & Primack 1982; Olive & Turner 
1982; Cabibbo, Farrar & Maiani 1981; Peebles 1982; Sikivie 1982; Milgrom 1983).

Among these explanations there is a sense of naturalness in suggesting that the relics
of big bang provide the dark matter. For example, considerable amount of work has
been done in recent years to understand the dynamics of the universe dominated by
massive neutrinos (Davis et al. 1981; Chubb 1983; Doroshkevich et al. 1981; Bond,
Efstathiou & Silk 1980; Wasserman 1981; Peebles 1982; Melott 1983; Cowsik 1983;
Cowsik 1986; Sato & Takahara 1981; Schramm & Steigman 1981; Klinkhamer &
Norman 1981).

In the standard big bang scenario, stable massive neutrinos (with mass of the order of
∼ 20 eV) would decouple from the rest of the matter at a very early epoch ( ∼ 1 MeV).
After this epoch, these neutrinos free-stream in space time as collisionless particles,
interacting only through gravity. Such a collisionless species can condense in any
potential well and provide the missing mass.

In this paper we shall consider certain mathematical features of such collisionless
dark matter which permeates throughout the universe. We shall see that the
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gravitational effects in such an infinite medium can have certain peculiarities not
exhibited by finite bound gravitating systems. Though we shall call the constituents of
dark matter as neutrinos, our analysis will be applicable to any other collisionless relic
of big bang.

The mathematical formalism is presented in Section 2 wherein we solve the
collisionless Boltzmann equation self-consistently in the linear approximation. We
show that gravitational potential in an infinite medium can have maxima and minima.

It is possible that these non-trivial turning points in the gravitational potential are
responsible for the phenomena of secondary maxima observed in a number of clusters
of galaxies (Baier 1983). We show in Section 3 that the observed features are reasonably
well described by our model. In addition, the present model may also provide (at least a
partial) explanation to the flat rotation curves of spiral galaxies (Rubin 1979; Rubin et
al. 1980, 1982; Bosma 1978).
 

2. Mathematical formalism
 

2.1 Collisionless Gas in Linear Approximation
 
Consider a system of collisionless neutrinos of mass mv, in a gravitational potential 
φ (x, t). Let ƒtotal (x, v, t) denote the number of neutrinos in the phase space interval
x+d3x, ν+d3v) at a time t. (The subscript ‘total’ is added for future notational
convenience.) Conservation of phase-space density leads to the collisionless Boltzmann
equation 
 
 (1)

 
The gravitational potential φ ( x, t) satisfies Poisson’s equation
 

∇2φ(x, t) = 4πGmv ∫ f (x, v, t)d3v+4πGρext(x,t). (2)
 

Here ρext (x, t) denotes the mass density of gravitating matter other than the neutrinos. 
(We shall call them, somewhat loosely, as ‘galaxies’!) As already emphasized, we expect 
the gravitational field of a cluster of galaxies to be dominated by the neutrinos rather
than by the ρext(x, t).

In writing down Equations (1) and (2), we have already neglected the expansion of the
universe and other general relativistic effects. Such an approximation is definitely valid
during recent epochs. The introduction of the expansion of the universe is necessary to
discuss the evolution of perturbation in a collisionless gas and will be taken up in a
subsequent paper.

The general solution to Equations (1) and (2) is unknown. To make any progress we
have to make reasonable approximations. To be specific, let us consider a cluster of
galaxies with a neutrino halo, and treat galaxies as a perturbation in the neutrino
background. In the (trivial) zeroth order approximation, we shall entirely neglect the
galaxies and assume neutrinos to be distributed homogeneously all over the universe.
Such a homogeneous distribution of matter does not produce any gravitational
potential. Thus, in the zeroth order, we can take
 

 ftotal (x, v, t) = f0 (v);  ρext(x, t) = 0 (3)
 

 

φ(x, t) = 0. (4)
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Let us now ‘switch on’ the galaxies in the form of ρext (x, t). These galactic perturbations
will induce clustering in the neutrino background and will make the distribution
function space-dependent. Such a space-dependent distribution function will in turn
produce a gravitational potential of its own. Thus, in the first order, the potential φ (x, t)
arises from two sources: (a) A part φext (x, t) which comes from ρext(x, t) and satisfies
the equation,

 

∇2φext(x, t) = 4πGρext(x, t) (5)
 

and (b) a part (φ –φext) which is due to perturbed neutrino distribution, which we shall
call f (x, v,t). That is,
 

ftotal(x, v, t) = f0(v) + f(x, v, t), (6)
 

∇2[φ(x, t) – φext(x, t)] = 4πGmv ∫ f (x, v t) d3v. (7)
 

We shall assume that f     f0 and linearize (1) in f. This gives, 
 

(8)
 
Once the form of the perturbation, ρext (or φext(x, t)) is specified, Equations (7) and (8)
determine the perturbed distribution of dark matter in a cluster.

These equations can be solved in a straightforward manner using Fourier
transforms. It is convenient to define the ‘one-sided’ Fourier transform (Lifshitz &
Pitaevskii 1981) of f (x, v, t) (and similarly for φ (x ,t)) by,
 

(9)
 
The inverse transform is given by
 

(10)
 
Here the ω integral is taken along a straight line in the complex ω-plane parallel to and
above the real axis passing above all the singularities of fkω. We multiply both sides of
(8)by eiωt and integrate with respect to t. Defining fk(v, t) and gk(v) by,
 

fk (v, t) = ∫ d3 x f (x, v, t)e–ik  x, (11)
 

gk(v) = fk (v, t)|t = 0 = fk (v, 0). (12)
 

We can write (8) in Fourier space as,
 

(13)
 
Equation (7) in the Fourier space reads as
 

– k2 (φkω – φkω (ext)) = 4πGmv ∫ fkω(v)d3v. (14)
 

Equation (13) can be solved to give,
 
 
 

(15)
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Using (14) and (15) we can determine φkω to be,
 

(16)
 
where
 

(17)
 
Given the φext and the initial condition gk (v), Equation (16) determines φkω  Using φkω

in (15) gives us the perturbed distribution of dark matter. Thus (15) and (16) solve the
problem completely in the linear approximation. The potential φ(x, t) and the
distribution function f(x, v, t) can be obtained by the inverse transformations (10) of
Equations (15) and (16).

From Equation (16), it is clear that φkω arises from two different sources. Initial
inhomogenities in the medium, characterized by gk, propagate in time and contribute as
the second term in (16). As we are more interested in the effect of external galactic
perturbations, we shall take the initial condition,
 

gk = 0 (18)
 

leading to,
 

(19)
 

This equation shows that the neutrino background acts as a polarizable medium. The
potential in the medium is scaled by a factor ε (k, ω) which may be called the
‘gravitational permittivity’ of the medium. As one can see from (17),    (k, ω) is
completely determined by the background distribution function f0 (v). 

There is a minor mathematical point which is worth taking note of at this stage.
Expressions like (16), (17) etc. contain integrals with integrands that have poles in the
real axis (for example, the integral in (17) has a pole at ω = k·u). Thus, one has to
specify the contour of integration for these expressions. This is a well-known feature in
the theory of collisionless plasmas (Lifshitz & Pitaevskii 1981). We assume that the
potential was zero at t= – ∞ and was switched on adiabatically:
 

 (t) ∼ φωe–iωtePt
                     (P    0) (20)

 

The exp (pt) factor makes φ vanish in the past infinity. The limit of (p→0) is taken at
the end of the calculations. (As it stands (20) diverges at the future infinity; however,
because of causality, the behaviour of φ(t) at future infinity cannot affect physics at any
finite time.) Clearly this operation is equivalent to replacing ω by (ω + ip) and taking
(p→0) limit in the end. Such a procedure makes the integral in (16), (17) etc. well-
defined. Whenever a pole in the real axis is encountered we shall assume that ω has an
infinitestimal positive imaginary part. 

To understand the effects of ε(k, ω) and the polarization of the medium, we have to
consider suitable ‘test perturbations’ in the form of ρext(x, t). Let us assume that
ρext(x, t) arises due to a set of Ν galaxies. We shall denote the trajectory of the nth 
galaxy (n =1, 2, . . . , N) by Rn(t). Then if the mass of the nth galaxy is Mn , we have,
 

(21)

ε
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Since
 

∇2φ ext(x, t) = 4πG ρext(x, t), (22)
 
we get,
 

(23)
 
Two simple cases are of physical importance: (i) The galaxy is at rest; R(t) =
R = constant, and (ii) The galaxy is moving with a uniform velocity; R(t) =ut. The
effect of Ν galaxies in similar state of motion can be found by superposing individual
galaxies. In these two cases φk

 ext are given by
 

(24)
 

 
(25)

 
Case (i) leads to an interesting steady-state distribution of dark matter which we shall
discuss in the remaining sections of this paper. The situation described in case (ii) is of
relevance in the discussion of dynamical friction and galactic segregation. This will be
discussed in a future publication.
 

2.2 The Steady-State Distribution
 
Rigorously speaking, galaxies in a cluster cannot be considered to be stationary.
However, once the cluster has reached a steady-state configuration, one can meaning-
fully discuss a time-independent distribution function. This time-independent distri-
bution of galactic matter will induce clustering in the neutrino gas. We are interested in
the form of this distribution function.

It is obvious that the time independent solution is determined by the static part of the
permittivity viz. ε(k, 0). (To see this, note that when the inverse transform of φkw is
taken, using (20) and (25) it is the pole at ω = 0 that produces the static part of the
potential.) Considering the importance of the result, we shall derive it more directly.
When f, φ and ρext are independent of time, it is easy to show that
 

(26)
 
with
 

(27)
 
Assuming f0 (v) depends only on |ν| (which is a reasonable assumption because there are
no preferred directions in the velocity space), we get
 

(28)
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where,
 
 
 

Thus the static part of the permittivity is essentially determined by the Jean’s length k J 
–l 

of the background medium. In this case it is instructive to compare (28) with the static
part of the permittivity of an electromagnetically active medium. In the electromagnetic
case, (28) is replaced by,
 

(29) 
 
where kD

–1 is the Debye length for the medium. Note that the sign of k2 is different in
(28) and (29). 

Substituting (28) into (26), we get the potential to be,
 

(30)
 
Let us calculate the potential at any point x, due to a galaxy of mass Μ kept at the
origin. Taking ρ ext(x) = Μδ (x) and using the inverse transformations we get, 
 

(31)
 
In this section we have not bothered to show the iε explicitly. It is easy to see (using
reasonings similar to that of Equation 20) that kJ should be treated as having an
infinitesimal positive part. With this prescription, (31) gives
 

(32)
 
Thus the polarization of the medium introduces an extra sinusoidal dependence in
φ(x ). This is to be contrasted with the electromagnetic case in which one would have
used (29) rather than (28). The change in the sign of k2 term has the effect of replacing
(32) by, 
 

(33)
 
leading to the well-known Debye shielding. Equation (32) emphasizes the fact that
gravitational effects cannot be shielded. This oscillatory behaviour of the gravitational
field of a test mass in a collisionless gas was derived earlier by Marochnik (1968) in the
context of a star in a star cluster. 

Let us look at the physics described by Equation (32). In the absence of neutrino
background, a galaxy of mass Μ kept at the origin will produce the Newtonian |x|–1 

potential. Any test particle, say, a galaxy, will feel this force and will be attracted
towards the origin. When the neutrino cloud is present, the situation can be very
different. The galaxy at the origin perturbs the background and leads to in-
homogenities. Any test particle (at a point x) will now feel the combined effects of the
perturbed medium as well as the galaxy at the origin. Depending on the relative
distribution of inhomogenities, the test particle may feel a force either towards the
origin or away from the origin. Thus—as is clear from (32)—the sign and slope of φ (x)
can be positive or negative, implying either attraction or repulsion.
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This peculiar feature, which has no analogue in finite, bound, gravitating systems, can
also be understood from another angle. The gravitational potential produced by any
spherically symmetric distribution of matter with density ρ(r) satisfies the equation,
 

(34)
 
Therefore,
 

(35)
 
A turning point for φ at, say, r = R would imply the vanishing of the ∂φ/∂r at r = R,
and hence the vanishing of the integral in (35). In normal circumstances ρ(r) is always
greater than zero and thus the integral cannot vanish. This argument however assumes
that ρ(r) has only finite extent in space and falls faster than r –3 at large r. In an infinite
homogeneous medium, for example, the integrals like the one in (35) do not exist. We
have to do a more careful job. Suppose that the gravitating matter consists of two
components ρ1 (r) and ρ2 (r). Let ρ1 (r) fall faster than r–3 at large distances. However,
suppose ρ2 (r) is equal to ρ2 + f (r) where ρ2 is a constant homogeneous distribution
throughout space and f (r) is the deviation from the homogeneity which may be positive
or negative (i.e. ρ2 (r) may be enhanced or depreciated from the mean value ρ2). Of
course f (r) <|ρ2(r)| so that ρ2 is always greater than zero. The gravitational potential
φ due to this distribution satisfies the equation
 

∇2φ = 4πG(ρ1+ρ2+f). (36)
 

Because of linearity, we can write φ = ψ+n where ψ and η satisfy the equations
 

∇2ψ = 4πG(ρ2, (37)
 

∇2η = 4πG(ρ1+f). (38)
 

We realise that the potential ψ produced by a distribution ρ2 (constant throughout the
universe) is formally infinite. But this is of no concern because such a homogeneous
distribution of matter does not provide any gravitational force. In other words, the
dynamics is completely determined by η(r). This η(r) can have nontrivial maxima and
minima because the source for η(r) (which is ρ1(r) + f(r)) need not be positive definite.
This is precisely what happens when a homogeneous background of neutrinos is
present in the universe. Deviations from homogeneity, which are responsible for
gravitational force may be positive or negative. Since such an homogeneous back-
ground distribution is of relevance in many a cosmological context (see for example:
Peebles 1980 and Weinberg 1972), the above mentioned feature should be kept in mind.

Using (26) and (28) one can immediately obtain the distribution of dark matter:
 

(39)
 

(40)
 

In other words,
 

(41)
 
 

This equation relates the spatial distribution of dark matter to the overall gravitational

– –

–

–

–
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potential. Clearly, when φ(x) is negative [regions of attraction] ρv (x) is positive (density
enhancement) and vice versa. In the case of a test galaxy at origin, we can use (32) in (41)
to obtain,
 

(42)
 
 

The validity of linear perturbation theory requires the condition
 

(43)
 

which must be kept in mind in using expressions like (42).
The potential due to a distribution of galaxies can be found by superposing

potentials of the form (32). For a distribution of galaxies represented by ρext (x), this is
given by the integral,
 

(44)

 
If ρext(r) is assumed to be spherically symmetric (which is a reasonable assumption for
most large clusters of galaxies), then the angular integrations can be performed to give,
 

(45)
 
Even though (45) will lead to a much more complicated form than (32) the qualitative
features will be the same. In particular one does expect the sinusoidal behaviour of the
potential, at least at large x. As a prototype, consider two simple forms for ρ(r):
(i) exponential fall with
 

(46) 

 
and (ii) a box type fall off with
 

(47)
 
 

For these two cases (45) can be evaluated analytically. With (46) we get, with
 
 
 
 
 

and for (47) we get 
 

(49)
 
 

(50)
 
Both (49) and (50) exhibit the ‘cosine’ dependence at large distances. It is also clear from
(45) that for large x, it is the second integral in the right-hand side that contributes most,
leading to the cosine dependence.

(48)



Gravitational perturbation of dark matter 255
 

In the above analysis we have specified ρext(x) in an ad hoc manner. In reality, ρext(x) 
will be determined in a self-consistent manner by the response of the galaxies to the
gravitational potential. This leads to some interesting tests of the above model which we
shall indicate in the next section.
 

3. Comparison with observation
 
The discussion in the previous sections has been purely kinematic. In order to apply
these results to any realistic astrophysical system, one has to consider the dynamics of
the model as well. In particular, is it possible for a homogeneous distribution of
collisionless relic to arise in standard big bang model? In the conventional picture
of v-dominated universe with adiabatic fluctuations the first structures to form and
collapse are the super clusters (Bond, Efstathiou & Silk 1980; Bond & Sazlay 1983). In
such a picture, it will be very difficult to obtain a homogeneous distribution. On the
contrary, there are other scenarios in which such a situation can arise. One simple
possibility would be isothermal v-fluctuations. A more interesting situation, however
can arise if there existed an unstable heavy neutrino which decays to the stable light
neutrino (Simpson 1985; Fukugita & Yanagida 1984; Padmanabhan & Vasanthi 1985).
The decay products would be relativistic at the time of decay and can provide a
homogeneous background at reasonably low redshifts. While the dynamics of such a
model is yet to be investigated fully, it is quite likely to be very different from the
standard scenario. In general, dark matter observations can be explained with relative
ease, if there are two components to dark matter: one of which is distributed reasonably
homogeneously and the other clustered at smaller scales.

The above comments as well as the discussion in the following sections are somewhat
tentative, and are intended only to point out certain possibilities. Whether these
possibilities can be implemented realistically in a consistent astrophysical scenario is a
question of dynamics and is beyond the scope of the present paper.
 

3.1 Secondary Maxima in Clusters of Galaxies
 
Given a reliable functional form of visible matter density in a cluster, one may attempt a
self-consistent model-building based on the above discussion. However, as discussed in
the last section, the theory predicts a sinusoidal dependence of the potential on the
radial distance, as shown in Fig. 1. Qualitatively, we expect test galaxies to cluster
around the minima of the potential. In other words, at least in some clusters, one
expects a secondary maximum in the density distribution of visible matter. (Of course,
such a maximum is observable only when it occurs well within the size of the cluster.)

From Equation (32) it can be seen that the second minimum of the potential occurs
around kJ xm     2π. Solving the equation for the turning points,
 

cos kJx+kJx sin kJx = 0 (51)
 

one finds the value to be,
 

xm     6.1 kJ
–1. (52)

 

Using the definition of kJ we estimate 
 

(53)
 

≃ 

≃ 
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Figure 1. The perturbations of the cluster potential by the galaxies in the core.
 
 
We have scaled the expression with the value of ρ0 usually quoted for the Coma cluster
of galaxies. It is believed that ρ0 for other clusters are somewhat lower. We have scaled
the neutrino velocity dispersion σ by a typical galactic velocity dispersion in Coma
cluster (900–1200 km s–1). There is no deep theoretical reason to expect σ to have the
same value, though some models suggest this possibility. Of course, Pauli principle sets
the lower-limit
 (54)

 
Because of these uncertainties the value of xm will definitely vary from cluster to cluster.
We may naively expect a secondary maximum within one order of (53) (i.e. in the range
of 0.3 to 3 Mpc).

In the Coma cluster of galaxies, the velocity dispersion curves suggest a secondary
maximum at about 20 arcmin from the centre which corresponds to a distance scale of
about 0.7 Mpc.

A host of other clusters show evidence for a secondary maximum in the density
distribution. It is worth noting that no other simple explanation exists for this feature
(Baier 1983). We give in Table 1 a list of clusters (which exhibit the secondary
maximum), using the values of the redshift to these clusters (Hoessel, Gunn & Thuan
1980). 

We have estimated the distances x m. It may be noted that all these values fall between
0.49 Mpc and 1.44 Mpc, giving excellent qualitative agreement with the value in (53).
Assuming that the missing mass density in all these clusters is of the order of
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Table 1. List of clusters exhibiting secondary maximum (H = 50 h km s–1 Mpc–1.)

 
10–25 g cm–3 (which actually is somewhat large), one may conclude that the dark
matter has a velocity dispersion of a few thousands of kilometres per second.
 

3.2 Rotation Curves of Galaxies
 
Let us consider a galaxy situated somewhere near the first minimum of the potential (as
we saw in Section 3.1, this occurs at r = R with R = 6.1 kJ

–1). We assume that the centre
of the galaxy is located at R and the linear extent of the galaxy is small compared to
cluster scale. A star moving in the galaxy at a distance ξ from the centre of galaxy will be
subject to the combined gravitational force of the galaxy and the cluster. The potential
due to the galaxy at ξ is of the order of
 

(55)
 
where MG is the mass of the galaxy. The cluster potential at a point r is of the order of
 

(56)
 

where Mc is the core mass of the cluster. In our case r = R+ ξ with ξ    R. Expanding in
a Taylor series and noticing that φ' c(r) is zero, we get 
 

(57)
 
 

(58) 
 
 

where we have approximated cos kJr by unity and dropped an unimportant constant. 
Thus the total potential felt by the star at ξ is given by 
 

(59)
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The rotational velocity of a star at ξ is given by
 

(60)
 
Using kR = 6.1, v2 can be written as 
 

(61)
 
where
 
 
 
and
 

x = (ξ/R).
 

Since ν2 (ξ) contains two terms, one increasing with and the other decreasing with ξ, it is
easy to see that v2 can be flat for a range of ξ. 

We show in Fig. 2 the result of a numerical computation of v; for a set of fiducial
values of parameters (Mc = 1.5 × 1014 M  , MG = 4 ×1011 M  ). The density distri-
bution of galaxies was smoothened out near ξ = 0 to avoid the singularity at the origin.
As can be seen from Fig. 2, the rotation curve is reasonably flat for a large range in ξ. 
The flatness of rotation curves is probably the most convincing evidence for the dark
matter. However, one should not consider rotation curves as a “crucial” test for dark
matter modelling. It is fairly straightforward to explain flat rotation curves once some
form of dark matter distribution is invoked. All these models require some special
 

 

Figure 2. Rotation curve of a fiducial galaxy. The rotational velocity v, is plotted (in units of the
flat value vm) against the distance ξ from the centre of the galaxy. Note that the curve is reasonably
flat from    20 kpc to 50 kpc. Mc is the cluster core mass, and ΜG is the galaxy mass. The flatness
of the curve does not depend sensitively on the value of these parameters.

⊙ ⊙

≃ 
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alignment of the galaxy with respect to the dark matter distribution (they are usually
taken to be concentric). In our case we have assumed that the galaxy is near the
mininum of the potential. Thus we do not feel that explanation of rotation curve is a
sufficiently critical test of the dark matter distribution. The picture presented here is not
complete to every detail (Explanation for flat rotation curves using a neutrino
background is also attempted in Cowsik & Ghosh (1986) & Basdevant (1984)). In
particular, the present model is incapable of explaining the rotation curves of field
galaxies.
 

4. Conclusions
 
It is interesting to observe that grativational perturbations in an infinite medium may
actually lead to some observable consequences. Various aspects of this work requires
further study. It is necessary to develop a model for dark matter distribution by
evolving the collisionless Boltzmann equation from the past taking the expansion of the
universe into consideration. Such an investigation is especially important in deciding
whether dark matter condensates are truly isolated finite gravitating systems (like, say,
galaxies or clusters of galaxies) or whether they extend throughout the universe with an
increased density contrast near gravitating objects (Padmanabhan & Vasanthi 1985). It
would be also interesting to see how sensitively our results depend on various
approximations made in this paper (for example, homogeneity of background,
linearization of equations etc.). Even at this stage the idea that neutrinos or some other
‘inos’ of finite mass play an essential role in the dynamics of the universe and are
responsible for a wide variety of phenomena otherwise not understandable seems to be
quite attractive.
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Abstract. We argue that observations on Milky Way and dwarf spheroidals
imply existence of individual haloes around dwarf spheroidals. If neutrinos
(or any other ‘hot’ particle) provide the dark matter then we show that:
(i) Embedding of visible matter inside large (∼ few Mpc) dark matter islands
is observationally untenable. (ii) Dwarf spheroidals possess dark matter
haloes of about 10 kpc radius around them, and have an (M/L) ratio of about
104. (iii) The haloes of spiral galaxies (e.g. Milky Way) extend to about
100 kpc in radius. If ‘cold’ dark matter makes up the haloes, then no
significant constraints are obtained. We discuss briefly the effect of these
constraints on larger scales.
 
Key words: dark matter—dwarf spheroidals—neutrinos—Milky Way

 

 
1. Introduction and summary: Is dark matter hot or cold?

 
It is likely that most of the matter in the universe is invisible; that is, it emits little or no
electromagnetic radiation. The dark matter makes its presence known through
gravitational effects. The flat rotation curves of spiral galaxies (Rubin 1979; Rubin et al. 
1982; Rubin, Thonnard & Ford 1982) and the mass to light ratios of large virialized 
clusters (see e.g. Rood 1981; Faber & Gallagher 1979), are most easily interpreted in 
terms of dark matter haloes. (Alternative interpretations, involving modification of 
dynamical laws will not be considered in this paper; (see Milgrom 1983; Bekenstein & 
Milgrom 1984). 

What does the invisible halo consist of? Since most of the visible matter is made of 
baryons, one may attempt to build the haloes from baryonic matter. However, a variety 
of observational constraints make baryonic dark matter an unattractive alternative, if 
not an impossibility, (Hegyi 1984). 

Leptonic dark matter could consist of any of the host of particles postulated to exist 
by the particle physicists. Among leptons, massive neutrinos were one of the earliest 
candidates (Gerhstein & Zeldovich 1966; Cowsik & McClelland 1972; Marx & Szalay 
1972). An experimental claim (as yet unconfirmed by other teams) that electron 
neutrinos are massive gave impetus to this idea (Lubimov et al. 1980). Considerable 
amount of work was done in recent years regarding the kinematics and dynamics of 
neutrino dominated universe (Sato & Takahara 1980; Bond, Efstathiou & Silk 1980; 
Doroshkevich et al. 1981; Klinkhamer & Norman 1981; Wasserman 1981; Peebles 
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1982). Two disturbing features emerged from this analysis: (i) If massive neutrino
haloes exist around dwarf spheroidals, with scale lengths comparable to that of visible
matter, then the neutrino mass should be greater than about 530 eV which is completely
ruled out (Aaronson 1983; Lin & Faber 1983). (ii) The numerical experiments suggest
that galaxy formation in a neutrino dominated universe would have taken place at
redshifts z < 2, which is in contradiction with the existence of high redshift objects
conventionally interpreted as the nuclei of galaxies (Frenk, White & Davies 1983; Dekel
& Aarseth 1984; Hut & White 1984; Kaiser 1983; Mellot 1983; Faber 1984). These two
features make neutrinos rather unattractive. (For attempts to reconcile these features
with the hypothesis of neutrino dominance, see Cowsik & Ghosh 1986; Mellot 1985.)

Motivated by these considerations, many people have attempted to model the dark
matter by supersymmetric fermions (‘sparticles’) and axions. Since these particles are
heavier than neutrinos, their ‘thermal’ velocities will be lower, earning them the name
‘cold dark matter’. (Neutrino, on the other hand, is an example of ‘hot dark matter’.)
Cold dark matter can be made to avoid the two difficulties mentioned in the previous
paragraph with relative ease (Blumenthal et al. 1984; Primack 1984). On the other hand
they seem to face some trouble in explaining the largest scale structures viz.
superclusters and voids (Primack & Blumenthal 1984). Besides, the experimental
evidence for the existence of many of the cold dark matter candidates is weaker than
that for the nonzero mass of the neutrino. (Theoretical ideas have to be hastily reshaped
if the mass of any species of neutrinos is proved to be definitely non-zero!).

Taking an unprejudiced viewpoint, one may ask: Do observations give a clear cut
‘yes’ or ‘no’ answer to the existence of ‘hot’ or ‘cold’ dark matter?

We attempt to discuss this question in a series of three papers. In the present paper we
analyse the constraints on dark matter distribution which arise from observations on
our Galaxy and the dwarf satellites. The second paper will discuss groups and clusters
of galaxies; the third paper will consider various dynamical aspects of clustering.

Within the scope of existing observations, we have not been able to provide a clear cut
‘yes-no’ answer to the question we have raised. However, rather stringent constraints 
can be imposed on the scale length, shape and densities of dark matter haloes. We find
that neutrino (‘hot’ dark matter) distribution is much more severely constrained than
any cold dark matter scenario. If neutrinos constitute the dark matter, then, we show:
 

(i) Scenarios in which galaxies are embedded in large (∼ Mpc) neutrino ‘islands’ are
ruled out by observations.

(ii) The halo around our Galaxy cannot extend significantly beyond ~ 60 kpc.
(iii) Dwarf spheroidals must have, a halo which extends upto about 10 kpc from

their centre. This will give dwarf spheroidals a mass to light ratio of 104(!) 
making them very peculiar objects.

 

Cold dark matter, on the other hand does not lead to such stringent conditions. We
leave the reader to judge for himself whether these constraints effectively rule out
neutrino dominance.

The paper is organized as follows: In Section 2, we review and analyse the existing
observational data about Milky Way and dwarf spheroidals. Section 3 compares
standard theoretical modelling with the observations and determines the constraints.
Section 4 discusses various offshoots, arguments and counterarguments based on the
previous sections.
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2. Dark matter observations
 

2.1 Milky Way
 
The visible matter in our Galaxy does not extend significantly beyond l0 kpc.
Presumably the effects of dark matter haloes would be most pronounced at distances
> 10 kpc. The rotation curve derived from 21 cm observations is reasonably flat right
from about 8 kpc. Using CO observations of molecular complexes related to Η II
regions, the flat rotation curve can be extended out to 16 kpc. At larger distances,
globular clusters can be used as tracers of dark matter. The data from globular clusters
(as well as 21 cm and CO observations) are summarized in Fig. 1. (The data are taken 
from the conclusions of Innanen, Harris & Webbink 1983; Faber & Gallagher 1979;
Hartwick & Sargent 1978; Peebles 1979; Mihalas & Binney 1981; Gunn, Knapp &
Tremaine 1979; Similar data are also presented in Lynden-Bell 1983.) 

Within the limits of observational error, the data are very well fit by the mass radius
curve,
 

(1)
 

The error-bar in the coefficient arises from the spread in the data points. The mean
curve (solid line) and the spread (broken lines) are shown in Fig. 1.
 

 

Figure 1. Total mass Μ within a radius r plotted against the radius r of the Milky Way galaxy.
The solid line is the best fit curve for M(r) equation. The broken lines are the best fit lines with
upper and lower limits on error bar. The dot-dash line represents the M – r curve corresponding
to Equation (13) in the text.
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For judging the goodness of fit, the data were tested with a power law Μ ∝ rn . The
best fit value for n turns out to be 0.9 with a σ2 (mean square deviation) of 0.0095. On the
other hand, the theoretical curve Μ ∝ r, shown in the figure has a σ2 of 0.01 which is
comparable to 0.0095, indicating a good fit. For future reference, we may note that
Μ ∝ r3 curve leads to a σ2 of 0.58, nearly sixty times higher.

We note that, in the range 8 kpc < r < 75 kpc, the mass distribution (1) is equivalent
to the density fall off
 

ρ(r) = 8.1 × 10–23g cm–3 (r/1 kpc)–2 (2)
 

2.2 Dwarf  Spheroidals
 
The seven dwarf spheroidals Fornax, Sculptor, Leo I, Leo II, Draco, Ursa Minor and
Carina are usually considered to be the satellite galaxies of Milky Way. The
gravitational mass of these objects were determined recently (Faber & Lin 1983;
Aaronson 1983). In Fig. 2, we have plotted the gravitational mass of the dwarf
spheroidals against their radii, in a log-log plot. The ‘best fitting’ curve is,
 

M (r) = 3.6 × 106 M  (r/1 kpc)2 4 (3)
 

However, the σ2 for this fit is about 0.24. For comparison we tried Μ ∝ R curve
and Μ ∝ R3 curve which give σ2 values of 0.31 and 0.26 respectively. Clearly the data are
too scattered for being fitted into any single power law curve with significantly small σ2.

For Draco and Ursa Minor mass estimates are available from velocity dispersion
(Aaronson 1983) while for others the masses are estimated from tidal non-disruption.
One may plot the mean density of dwarf spheroidals against their distance from Milky
Way. (The distances are heliocentric distances.) This plot is shown in Fig. 3. The solid
line in the figure corresponds to the relation,
 

ρDS(r) = 9.2 × 10–22 g cm–3(r/1 kpc)–2 (4)
 

The σ2 for this fit is 0.009; for comparison, the best fit curve for log ρ – log r has a slope
of (– 2.2) and σ2 of 0.006. Thus the mean densities of dwarf spheroidals falloff as the
inverse square of the distance from Milky Way. This is to be expected because tidally
limited mass estimates are used for most dwarfs. A comparison of (4) and (2) shows that
ρDS exceeds the expected dark matter halo density of Milky Way at the same location by
about a factor of 10. We shall discuss this point more fully in the next section.
 

2.3 Spirals
 
The flat rotation curve of Milky Way signals the relation Μ ∝ r. It is well known that
this feature is exhibited by a large number of spiral galaxies. If we denote the mass-
radius relation of n th spiral galaxy in a sample by
 

M (r) = cnr (5)
 

then we may ask the question: How different are the numbers in the set {cn}? If the dark 
matter halo around the galaxies are more fundamental units than the visible galaxies,
then we would expect the {cn} to be ‘reasonably’ close to each other. One main source of
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Figure 2. The mass Μ of the dwarf spheroidals plotted against the radius r of the dwarf
spheroidals. The solid line is the best fitting curve,
 

 

scatter in the {cn} is the mass variation in the visible part of the galaxies themselves.
(Since Μ in (5) is the total mass, the variation in visible part will affect cn). This scatter
can be minimized by studying the relation (5) for various types of spirals individually.

In Figs 4(a, b) we have plotted the mass–radius relation for SAB and SA types spirals. 
The data are taken from the table given by Faber & Gallagher (1979). The gravitational
mass estimated from rotation velocity at the Holmberg radius is plotted against the
corresponding Holmberg radius. In a further attempt to minimize the effect of visible
part of the galaxy we have used only those spirals with (Holmberg) radius greater than
15 kpc. 

In the case of SAB galaxies all the points lie within a strip indicated by dotted lines in
Fig. 4(a) corresponding to (with solid line showing the best fit),
 

(6)
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Figure 3. The solid line shows mean density of dwarf spheroidals plotted against the distance
of dwarf spheroidals from the centre of the Milky Way. The thin line shows the density falloff of 
MW as a function of its distance from the centre of MW.
 
 
On the other hand all SA galaxies are bound within the mass–radius curves
 

(7)
 

Considering the scales and uncertainties involved one may reasonably assume that cn
’s

do not differ from each other drastically.
In other words, all spirals are embedded in individual dark matter haloes with r–2 

density profile. We shall attempt later (in Section 4 as well as in subsequent papers) to
treat galaxies with dark haloes as basic units. Spiral galaxy observations add credibility
to this assumption.

We shall now consider the constraints on the theoretical models which arise from the
above observations.
 

3. Theoretical models
 
The constraints on theoretical models naturally depend on some basic assumptions as
well as on the nature of the dark matter: (a) neutrino (hot) or (b) cold dark matter. We
shall discuss (a) and (b) separately below.
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Figure 4.  Mass-radius relationship for a) SAB spirals b) SA spirals. The solid line shows the
best fit curve.
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3.1 Neutrino (Hot) Dark Matter
 
Assuming neutrinos constitute the dark matter in the universe, we have the well-known
constraint from cosmology (Gerhstein & Zeldovich 1966; Cowsik & McClelland 1972)
 

(8)
 
Here the sum is over all species of neutrinos, h is the Hubble constant in units of 
100 km s–1 Mpc–1 and Ω is the ratio between mass density of the universe and critical 
density. Assuming a single species of neutrino and that Ωh2~ 1/2, we shall take mv to be 
less than 50 eV. The only existing experimental support for massive neutrinos suggests
a bound 14 eV < mv < 40 eV. Thus mv ~ 30 eV will be used for scaling the expressions
in what follows.

Tremaine & Gunn (1979) have shown that mv must satisfy the constraint,
 

(9)
 
where σν is the velocity dispersion of neutrinos bound in a gravitational potential well
of core radius rcv. The constraint (9) arises from the theorem (see for example, Lynden-
Bell 1967), which states that maximum coarse grained phase space density can only
decrease with time. Equation (9) can be rewritten as (note a crucial printing error in the
original paper of Tremaine & Gunn 1979).
 

(10)
 

If we make the following two crucial assumptions: (i) the σν for neutrinos in dwarf
spheroidals is the same as that of baryonic matter ~ 10 km s–1 (Aaronson 1983) and
(ii) the rcv for neutrinos in dwarf spheroidals are of the same order as that of tidal radii
of baryonic matter ~ 1 kpc, then we get mv > 170 eV, in violent contradiction with (8).
Clearly hot dark matter picture is in trouble.

The only way to escape this situation is to relax the assumptions (i) and (ii) in the
above paragraph. If one assumes that the velocity dispersion of neutrinos is much
higher than that of baryonic matter, making the rcv much larger than rc baryons (= rcb).
Clearly this will bring down the right hand side of (10) allowing one to escape the
constraint. The question that faces us is the following: How much can one push up rcv 

and σv? 
There are three essentially different approaches which one may consider at this stage:

(i) Neutrinos form large (few Mpc) dark matter islands in which our local group and
dwarf spheroidals are embedded (Cowsik & Ghosh 1986). There is no dark matter
bound to dwarf spheroidals individually, (ii) Dwarf spheroidals are imbedded in the
haloes of our Galaxy. The neutrino halo extends for ∼ 250 kpc around Milky Way. No
significant amount of dark matter is attached to dwarf spheroidals. (iii) Dwarf
spheroidals do have a neutrino halo around them, but this halo has rc         rcb.

We shall now show that approaches (i) and (ii) are theoretically and observationally 
unsound; it is essential to assume that there exists dark matter bound individually to 
dwarf spheroidals. 

To see this consider the mass and density profiles of Milky Way shown in Figs 1 and
3. Milky Way dark matter, right up to 75 kpc, is definitely not a constant density profile.
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The density enhancement between 10 kpc and 100 kpc is by a factor 100 and cannot be
treated at all as a small perturbation on a constant density background. The best
analysed dwarf spheroidals Draco and Ursa Minor are at about 67 kpc which is in the
region of M ∝ r behaviour. (This conclusion is independently supported by the
standard Milky Way modelling by Lin & Lynden-Bell (1982) based on Magellanic
Stream and by Frenk & White (1982) based on globular cluster orbits.) Dark matter
halo around our Galaxy is best represented by an isothermal sphere.

Is it possible to assume that the visible matter in dwarf spheroidals only sample the
neutrinos which are actually bound to the halo around Milky Way, but just happen to
be streaming in the vicinity of dwarfs? This is impossible because of two reasons. 

Firstly observations show that the density of gravitating matter in dwarf spheroidals
is more than ten times higher than that of Milky Way halo density at that point. (See
Equations 2 and 4.) This ten-fold local enhancement of density indicates the existence of
about 106 Μ  of dark matter bound to the dwarf spheroidals. Secondly, considerations
of tidal stability imply the existence of dark matter bound to dwarf spheroidals.
Consider embedding a dwarf spheroidal in the isothermal halo of our Galaxy. The
condition for the tidal stability of the dwarf spheroidals can be derived from
Chandrasekhar (1942); (Section 5.5; Equations 5.601 to 5.613.) We get
 

(ρv + ρB)bound > 6 ρbg. (11)
 

Here ρv and ρB on the left denote average density of neutrinos and baryons (stars)
bound to the dwarf spheroidal, while ρbg is the density of background dark matter (not 
bound to dwarf spheroidal; part of Milky Way halo or still larger structure), at the 
vicinity of the dwarf spheroidal. Since ρbg in the vicinity of Draco or Ursa Minor 
(~ 67 kpc) is about 2 times 10–26 g cm–3 , the density of matter bound to Draco should
satisfy the condition,
 

(ρv+ρB)bound > 1.2×10–25 g cm–3 (12)
 

In a size of 1 kpc, this implies a gravitationally bound mass of ~ 8 ×10 Μ   , which is 
more than one order of magnitude higher than the visible matter (both Draco and Ursa
Minor have visible mass of ~ 2×105 Μ ; see Faber & Lin 1983). In other words the
amount of dark matter bound to these dwarf spheroidals must be quite high (~7.8 
×106 Μ  ) to ensure tidal stability. Thus, both observationally and theoretically, there
must exist dark matter bound to dwarf spheroidals.

Before we proceed further we would like to emphasize three important points
relevant to this discussion, (i) Equation (11) was derived assuming the satellite galaxy
to be orbiting Milky Way in a low eccentricity orbit. Eccentricity of the orbit will
change the numerical coefficient 6 in Equation (11) to a higher value making matters
worse (King 1962). (ii) The background density ρbg(r) may vary very little over the
visible extent (~1 kpc) of the dwarf spheroidal. We shall show later that even (ρv)bound

does not vary significantly over the visible extent of the dwarf spheroidals. This does not
affect the tidal stability argument, (iii) On the other hand, the fact that ρbg is; not
globally constant is crucial for the tidal stability argument. This is because a globally
constant density distribution tidally compresses matter rather than disrupts.

The last point mentioned above shows that we may be able to make the tidal
constraint less severe by flattening the rbg (r) to a constant value beyond some radius rf.
Since Draco is at ~ 67 kpc, rf < 67 kpc (at least). Further Draco and Ursa Minor have 
ρv of the order of ~2 × 10–25 gcm–3. To provide this much of background density the
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Milky Way halo must flatten from about r f ~ 20 kpc. (From (2) we see that ρbg   2
× 10–25 gem–3 when r ~ 20 kpc.) In other words, one requires a density profile like,
 

ρ bg = 8 ×10–23 g cm–3 (r/1 kpc)–2 r     20 kpc
 

= 2 × 10–25 g cm–3 r    20 kpc (13)
 

Such a drastic assumption leads to many more problems: First of these is the direct
contradiction with accepted mass-radius relation for Milky Way halo. (We have
indicated modified mass profile based on (13) by a dash dot line in Fig. 1 which goes
outside the error bars of known observations.) Secondly it is impossible to ensure the
dynamical stability of an artificial configuration like the one in (13) where density falls
by two orders of magnitude and then remains constant. Lastly a configuration like (13)
will over-estimate the mass of local group (Milky Way–Andromeda systems) by a large
factor. For example, if we assume (13) to be valid up to ~ 300 kpc (tidally limited radius
of Milky Way by Andromeda) the mass contribution of Milky Way to our local group is
greater than 3 × 1014 M   ! This is nearly two orders higher than the upper bound (8.6
× 10 12 Μ ) obtained by studying the infall of local group towards Virgo cluster
(Lynden-Bell 1983). In short, there is no escape from assuming the existence of dark
matter bound to dwarf spheroidals.

Granted that neutrinos are bound around dwarf spheroidals what kind of
constraints can we obtain regarding their distribution?

From (10) it is clear that one has to increase the velocity dispersion σν and the core 
radius rv of the neutrino distribution. We shall now see how much latitude exists in 
these parameters. Suppose that the baryons are described by a truncated isothermal 
sphere with core radius rb, velocity dispersion σb and cutoff radius rt. (The sharp cutoff 
at an outer radius could be tidal truncation or because of the Gaussian falloff arising
from neutrino core.) Observationally, for the four dwarfs Sculptor, Draco, Ursa Minor
and Carina (which Faber &  Lin 1983 cite as having M/L > 1), the tidal cutoff radius rt 

varies between 0.5 kpc to 1.28 kpc with a mean value of 0.94 kpc. One may take the core 
radius rb to be about one-tenth of cutoff radius; i.e. rb ~ 100 pc. The σb for dwarfs are 
quite uncertain. Estimating from the visible mass, as 
 

σb ∼ (GMb/rt)1/2 (14)
 

it varies between 0.59 km s–1 and 2.63 km s–1 with an average of 1.4 km s–1 . (This
value is consistent with Aaronson’s (1983) measurements, though he uses a χ2 bound of
6.4 km s–1 for this discussion.) As for neutrino halo we shall assume it to be a concentric
isothermal sphere with core radius rv and velocity dispersion σv. When concentric
isothermal spheres form out of violent relaxation (or virialization) their core densities
will be comparable (see e.g. Sato 1981). Since central densities of isothermal spheres are
related to core radius and velocity dispersion as,
 

ρc = 9σ2/(4πGr2) (15)
 

the equality ρ vc      ρbc implies, (for a discussion of this assumption, see Appendix 2),
 

σv/σv = σb/rb. (16)
 

Using Equation (16), after some simple algebra Equation (10) can be rewritten as,
 

mv > (1010eV)(1 km s–1/σb)1/4(100 pc/rb)1/2(rb/rv)3/4 (17)

≃ 

⊙
⊙

≃ 
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or equivalently,
 

(rv/rb) > 109(mv/30 eV)–4/3(1 km s–1/σb)1/3(100 pc/rb)2/3. (18)
 

The right-hand side is scaled to ‘physically reasonable’ parameters. (For comparison we
note that with σb = 10km s–1, rb = 200 pc the coefficient 109 becomes 32.) We see
from (18) that the neutrino core radius must be nearly 100 times the baryonic core
radius; with rb ~ 100 pc, rv ~ 10 kpc. (By resorting to the extreme limits of
σb ~ 10 km s–1, rb ~ 200 pc, we will get rv ~ 6.4 kpc.)The baryonic matter with cutoff at
rt ~ 1 kpc is situated well within the neutrino core.

Such a large neutrino core will give an M/L value at the tidal radius r t to be about,
 

M/L = 3(rt/rb)2 ∼ 300. (19)
 

However the true M/L associated with the dwarf spheroidal is much higher than 300,
because the halo extends much further than rt. One may estimate the tidally limited
halo radius by setting,
 

(Mv/x3) > [Mbg/(R – x)3] (20)
 

where Mv (x) is the halo mass around dwarf within a distance x from its centre and Mbg 

is the mass in the halo of Milky Way within a distance R – x from Milky Way. (R is the
centre to centre distance between the spheroidal and Milky Way.) Simple calculation
based on our model will give,
 

x/R < [1+ (225 km s–1/σv)]–1 (21)
 

For Draco, with R ~ 70 kpc, σν ~ 100 km s–1, x is about 20 kpc. Within 20 kpc, Draco
will have a halo mass of 5 × 1010 Μ  and M/L ratio of about 104! If neutrinos
constitute the dark matter, then dwarf spheroidals are the most peculiar objects in this
universe.

In this picture, dwarf spheroidals of mass ~ 5 ×1010 Μ   is moving in the halo of
Milky Way galaxy. Dynamical friction will lead to an orbital relaxation timescale of the
order of, (Chandrasekhar 1942)
 

td  ∼ v3/G.2 Mρ = 6 × 1010 y (M/5 × 1010 M  )–1(v/200 km s–1)3 (ρ/10–26 g cm–3)–1.
(22) 

 

This estimate of td can easily change by a factor of 10 when finite size of haloes are taken
into account. Chandrasekhar’s original formula, for example has a coefficient, of the 
order of (8π)–1 on the right-hand side making matters worse. To save the situation it is 
necessary to assume that Milky Way halo density is considerably depleted at the 
vicinity of dwarf spheroidals. 

If all the above assumptions are granted, then 30 eV neutrinos may still be used to
model Milky Way and dwarf spheroidals, as far as kinematic features are concerned. We 
hope to discuss the dynamical features in a subsequent paper.
 

3.2 Cold Dark Matter 
 
The fact that cold dark matter candidates can easily account for dark matter in dwarf
spheroidals has been emphasized in literature repeatedly (Blumenthal et al. 1984;
Primack & Blumenthal 1983; Primack 1984). Since cold dark matter has significantly
lower velocity dispersion than neutrinos, they can cluster easily at 107 M   scales. As the
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mass of cold dark matter candidates are expected to be about > 1 keV, the phase space
constraint is easily satisfied. If the existence of stringent constraints is treated as a
negative aspect, then cold dark matter does better than neutrinos.
 
 

4. Discussion and conclusions
 
Contrary to claims often made in literature, the existence of dark matter in dwarfs does
not rule out the possibility of neutrino dominance. On the other hand, it does impose
stringent conditions on the distributional properties of dark matter. It is important to
see whether these constraints can be respected at the scales of groups and clusters of
galaxies. We intend to discuss this matter in detail in a subsequent paper; we shall
merely present an outline here.

To begin with, we expect the kinematic modelling of dark matter in the universe to
satisfy the following two criteria:
 

(i) There is only one kind of dark matter in the universe
This is probably most drastic of the simplifying assumptions we are making.

Unfortunately this assumption is required to obtain any reasonable constraint
whatsover. (With just two components for dark matter, it turns out that dark matter
parameters get completely out-of-hand.) Within the context of this paper, this
assumption implies that dark matter in dwarf spheroidals is of the same kind as dark
matter in our Galaxy. When larger structures are considered, this assumption works as
a powerful Occam’s razor. 
 

(ii) Dark matter clustering pattern is similar all over the universe.
As stated above, this assumption is (admittedly) vague. If the dark matter dominates 

the dynamics at all scales, we expect baryons to be secondary perturbations in the sea of
dark matter. Thus we expect dark matter to be distributed in a similar pattern all
throughout the universe. For example, the clustering scale of dark matter is expected to
be of the same order everywhere in the universe.

 

These two assumptions imply that dark matter is predominantly distributed around
the galaxies (and smaller dwarfs) as an extensive halo (~ 80 – 100 kpc). We take this
pattern to be the basic unit; even though halo of individual galaxies might overlap in
rich clusters if intergalactic spacing is less than about ~ 150 kpc. Consider a system of
Ν (gravitationally bound) galaxies, each with a visible matter radius rv (~ 10 kpc) and
dark matter halo extension of rh(~ 100 kpc), confined to a region of size R (‘cluster
size’). (The average intergalactic separation D(~ N–1/3 R) decides whether the haloes
overlap or not.) We can easily estimate the (M/L)c for the cluster from the (M/L)g for
individual galaxies evaluated at r = rv. The total mass in the cluster is,
 
 
 
 

(23)
 so that,
 (24)
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In other words cluster (M/L) ratios will be (rh/rv) times the galactic (M/L) ratios 
measured around the visible edges of galaxies. Since we expect (rh/rv) to be > 10, and
(M/L)gal ~ 10 – 20 (taking ellipticals also into account) we get (M/L)clusters ~ 100
– 200 which is not widely off the mark.

The intergalactic separation D in such a system will be of the order of (N–1/3 R).
If D > 2rh there is no significant merging of haloes and the dark matter resides around
each individual galaxy. On the other hand, if D < 2 rh (as it often happens), the halo 
material in the overlap region 1 = 2 rh – D will form a common background, of nearly 
uniform density. The mass in this background halo will be, 
 

(25)
 

so that,
 

(26) 
 

In the dense regions of the cluster, Mbg can be significant part of Mtotal. Such a common
halo, in our picture is dynamically generated. Galaxies are primary carriers of dark
matter.

The above discussion is intended to show that one may be able to describe (M/L)
observations at all scales without resorting to specific clustering at various scales.
 
 

Appendix 1
 

Criterion for Tidal Stability
 
We indicate below the derivation of Equation (11) in the text, based on Chandrasekhar
(1942).

Consider a coordinate system S(x, y, z) with origin at the centre of Milky Way galaxy
(MW). Let a dwarf spheroidal (DS) be going around MW in a circular orbit. Let the
distance to the centre of DS be R. We assume both MW and DS to be spherically
symmetric with relation to their respective centres, and that the linear extent of visible
matter in DS (~ 1 kpc) is much smaller than the distance R (~ 70 kpc). 

The gravitational potential felt by a star bound within the DS, is the sum of two terms
V(r) and U (r): V(r) is the potential due to all the matter bound to MW and is distributed 
in a spherically symmetric fashion about the origin (centre of MW). The background 
halo attached to MW, through which DS is moving, contributes to V(r). The U (r)
denotes the potential due to all matter bound to DS and is spherically symmetric about
the centre of DS. Since the DS is moving, U(r) has a complicated functional dependence
on the inertial coordinates. All the stars bound to the DS as well as any dark matter
bound to DS will contribute to U(r). In the rest frame of the DS, we shall take the shape
of DS to be a constant density sphere, with mean density, ρbound = (ρv + ρB) bound. 

Under these assumptions the tidal stability condition (Equation 5.613 of
Chandrasekhar 1942) becomes,
 

(A1.1)
 

using,
(A1.2)

 

– – –
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where ρbg(r) is the density of MW halo at r, and defining a ‘mean density’ by,
 

(A.13)
 
we can transform (A1.1) into a more useful expression. Simple algebra gives,
 
 
 

(A1.4)
 

so that (A1.l) becomes,
 

(A1.5)
 

This relation shows that: (i) a non-trivial criterion is esbalished only when ρbg(R) 
> ρbg(R). In particular, if MW halo was globally constant then ρbg = ρbg and (A1.5) 
is identically satisfied, (ii) the existence of ΜW halo matter in the vicinity of DS does 
help tidal stability (note the (– ρ bg (R)) term on the right hand side) but not completely.

We shall assume that density of matter bound to MW, ρ bg(r), has the following form:
 
 

(A1.6)
 
where rc is the core radius of MW with rc    8 kpc. Using (A1.6) in (A1.3) and (A1.5), we
get,
 

(A1.7) 
 

Neglecting rc(   8 kpc) compared to R (   70 kpc) we get Equation (11) of the text,
 

(A1.8)
 

ensuring tidal stability.
If (A1.8) is not satisfied, any normal astronomical system will get tidally disrupted.

Mathematically speaking, violation of (A1.8) will make all stellar orbits, except those
which satisfy very special initial conditions, to grow exponentially in time (see
Chandrasekhar 1942, op. cit. Equation 5.621).
 
 

Appendix 2
 

Dependence of the Results on the Ratio (ρvc/ρbc ) of Dwarf Spheroidals
 
In the text, we have assumed that the core densities of neutrinos and baryons are equal
in the dwarf spheroidals (see Equations 15 and 16). We shall here examine the sensitivity
of our results to this assumption. To do this, let us put, (in the text, we took α = 1)
 

(A2.1)
 

so that (16) is replaced by,
 

(A2.2)
 

It is straightforward to work out the α-dependence in various constraints. Equations

–

–

≲ 

≳≲ 
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(17), (18) and (19) are replaced by Equations (A2.3–5):
 

(A.2.3) 
 

(A2.4) 
 

(A2.5) 
 

The maximum distance up to which the DS-halo extends (due to tidal effect of our
Galaxy) is determined by Equations (20), (21) in the text. This equation (21) is modified
to, (vMW = 225 km s–1)
 

(A2.6)
 

Given some specific model for the formation of the DS and the haloes, α can be
estimated dynamically. Once α is estimated, the above equations present the
constraints. In the absence of such a clearcut model, we have two possible routes open
to us: (i) Use kinematic constraints to limit the range of α, and investigate results for
this particular range, (ii) Use qualitative, ‘guesstimates’ for α based on simplified
dynamics. We shall pursue both these routes here.

We know that ρb > ρv (at the core) for most astronomical systems. Thus we expect α
to be less than one. Observations on our Galaxy, for example, clearly indicate an
increase in (M/L) with radial distance. Dark matter is distributed smoothly and over a
larger scale, compared to visible matter, giving ρb > ρv at the core. Dynamically, we
expect ρb > ρv because of the following reason: In the standard big bang scenario,
baryons ‘fall into’ the potential well of neutrinos and quickly attain the same density
contrast as neutrinos (Sato 1981). Thus, just after formation, 
 

(A2.7)
 
So that in the beginning, (taking Ωb ~ 0.01 and Ωv ~ 1 where Ω =ρ /ρc)
 

(A2.8) 
 
Neutrinos, being dissipationless maintain their configuration (core radius, density etc.)
through violent relaxation and virialization. Baryons undergo dissipation and sink to
the centre increasing ρb. Since we see baryons to be lumped at scales ten times (or more)
smaller than the neutrino haloes, baryonic density would have enhanced by a factor of
about 103. In that case (ρv/ρb) today would be ~ 102 × 10–3· ~ 10–1, or α ~ 0.3. Note
that a contraction of baryonic matter by a factor ~ 102/3 ~5 is enough to produce an
α <1, starting from (A2.8).

These conclusions are reinforced by consideration of the maximum value allowed for
x in (A2.6). Demanding that xm < 20 kpc (i.e. DS halo does not extend for more than
20 kpc) with,
 

(A2.9)
 

it can be seen that α    1. On the other hand, too low a value of α will reduce the (M/L)
value of DS via (A2.5). References cited in the text suggests an (M/L) value for DS
galaxies to be greater than about 10.

With all these considerations in mind one may estimate the value of α to be in
the range of (0.01, 1.00). (It is known from (A2.8) that α = (ρv/ρb)1/2 is definitely less
 

–

≲ 
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than 10). For this range which varies by a factor of 100, αl/4 and α1/3 produce factors of
the order of 3–5. Since only these low powers of α appear in (A2.3)and (A2.4) our results
are not very sensitive to α. Note that as α varies from 10–2 to 1, the ratios of core
densities change from 10–4 to 1, which is sufficiently realistic range.

These arguments (partially at least) justify not including α in our discussion in the
text.
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